Contents

Forward
Abu Bakar Salleh

Language and Linguistics
Endangered Intergenerational Language Transmission: Evidence from the Indigenous Dusun Society of Sabah, Malaysia
Kamarlin Ombi, Roslan Suhailin, Sharil Nizam Sha’ri and Daisy Paul

Translating Denotative Meaning in the Holy Quran: Problems and Solutions
Noureldin Mohamed Abdelaal

“Facebooking” Across Asia – Learning English Along the Way?
Muhammad Kamarul Kabilan, Malini Ganapathy, Eric Bray, Gin Gin Gustine and Mizna Qasim

Examining the Factors Mediating the Intended Washback of the English Language school-based Assessment: Pre-service ESL Teachers’ Accounts
Alla Baksh Mohd Ayub Khan, Mohd Sallehhudin Abd Aziz and Siti Hamin Stapa

MA-TEFL Thesis Writing Regulations in Iran: Supervisors and Examiners’ Comments and Feedback
Sima Shahmohammadi Kaleybar and Parviz Alavinia

Reading and Vocabulary Knowledge Development: Sustained Independent Reading (SIR) Among Malaysian Tertiary Students
Debbita Ai Lin Tan and Shaidatul Akma Adi Kasuma

ESL Reading Activities on Facebook among Malaysian University Students
Shaidatul Akma Adi Kasuma and Debbita Ai Lin Tan

Education

Teachers’ Work Culture in an Islamic Junior High School in Lampung, Indonesia
Siti Patimah

An Effective Leadership Model for Madrasah Principals in Indonesia

VOL. 27 (1) MAR. 2019
Pertanika Journal of Social Sciences & Humanities (JSSH) is the official journal of Universiti Putra Malaysia published by UPM Press. It is an open-access online scientific journal which is free of charge. It publishes the scientific outputs. It neither accepts nor commissions third party content.

Recognized internationally as the leading peer-reviewed interdisciplinary journal devoted to the publication of original papers, it serves as a forum for practical approaches to improving quality in issues pertaining to social and behavioural sciences as well as the humanities.

JSSH is a quarterly (March, June, September and December) periodical that considers for publication original articles as per its scope. The journal publishes in English and it is open to authors around the world regardless of the nationality.

The Journal is available world-wide.

Aims and scope

Pertanika Journal of Social Sciences & Humanities aims to develop as a pioneer journal for the social sciences with a focus on emerging issues pertaining to the social and behavioural sciences as well as the humanities.

Areas relevant to the scope of the journal include Social Sciences—Accounting, anthropology, Archaeology and history, Architecture and habitat, Consumer and family economics, Economics, Education, Finance, Geography, Law, Management studies, Media and communication studies, Political sciences and public policy, Population studies, Psychology, Sociology, Technology management, Tourism; Humanities—Arts and culture, Dance, Historical and civilisation studies, Language and Linguistics, Literature, Music, Philosophy, Religious studies, Sports.

History

Pertanika was founded in 1978. A decision was made in 1992 to streamline Pertanika into three journals as Journal of Tropical Agricultural Science, Journal of Science & Technology, and Journal of Social Sciences & Humanities to meet the need for specialised journals in areas of study aligned with the interdisciplinary strengths of the university.

After almost 25 years, as an interdisciplinary Journal of Social Sciences & Humanities, the revamped journal focuses on research in social and behavioural sciences as well as the humanities, particularly in the Asia Pacific region.

Goal of Pertanika

Our goal is to bring the highest quality research to the widest possible audience.

Quality

We aim for excellence, sustained by a responsible and professional approach to journal publishing. Submissions are guaranteed to receive a decision within 14 weeks. The elapsed time from submission to publication for the articles averages 5-6 months.

Abstracting and indexing of Pertanika

Pertanika is 40 years old; this accumulated knowledge has resulted in Pertanika JSSH being abstracted and indexed in SCOPUS (Elsevier), Thomson (ISI) Web of Science™ Core Collection Emerging Sources Citation Index (ESCI). Web of Knowledge [BIOSIS & CAB Abstracts], EBSCO and EBSCOhost, DOAJ, Google Scholar, TIB, MyCite, ISC, Cabell’s Directories & Journal Guide.
Future vision
We are continuously improving access to our journal archives, content, and research services. We have the drive to realise exciting new horizons that will benefit not only the academic community, but society itself.

Citing journal articles

Publication policy
Pertanika policy prohibits an author from submitting the same manuscript for concurrent consideration by two or more publications. It prohibits as well publication of any manuscript that has already been published either in whole or substantial part elsewhere. It also does not permit publication of manuscript that has been published in full in Proceedings.

Code of Ethics
The Pertanika Journals and Universiti Putra Malaysia takes seriously the responsibility of all of its journal publications to reflect the highest in publication ethics. Thus all journals and journal editors are expected to abide by the Journal’s codes of ethics. Refer to Pertanika’s Code of Ethics for full details, or visit the Journal’s web link at http://www.pertanika.upm.edu.my/code_of_ethics.php

International Standard Serial Number (ISSN)
An ISSN is an 8-digit code used to identify periodicals such as journals of all kinds and on all media—print and electronic. All Pertanika journals have ISSN as well as an e-ISSN.

Journal of Social Sciences & Humanities: ISSN 0128-7702 (Print); ISSN 2231-8534 (Online).

Lag time
A decision on acceptance or rejection of a manuscript is reached in 3 to 4 months (average 14 weeks). The elapsed time from submission to publication for the articles averages 5-6 months.

Authorship
Authors are not permitted to add or remove any names from the authorship provided at the time of initial submission without the consent of the Journal’s Chief Executive Editor.

Manuscript preparation
Refer to Pertanika’s Instructions to Authors at the back of this journal.

Most scientific papers are prepared according to a format called IMRAD. The term represents the first letters of the words Introduction, Materials and Methods, Results, And, Discussion. IMRAD is simply a more ‘defined’ version of the “IBC” [Introduction, Body, Conclusion] format used for all academic writing. IMRAD indicates a pattern or format rather than a complete list of headings or components of research papers; the missing parts of a paper are: Title, Authors, Keywords, Abstract, Conclusions, and References. Additionally, some papers include Acknowledgments and Appendices.

The Introduction explains the scope and objective of the study in the light of current knowledge on the subject; the Materials and Methods describes how the study was conducted; the Results section reports what was found in the study; and the Discussion section explains meaning and significance of the results and provides suggestions for future directions of research. The manuscript must be prepared according to the Journal’s Instructions to Authors.

Editorial process
Authors are notified with an acknowledgement containing a Manuscript ID on receipt of a manuscript, and upon the editorial decision regarding publication.
Pertanika follows a **double-blind peer-review** process. Manuscripts deemed suitable for publication are usually sent to reviewers. Authors are encouraged to suggest names of at least three potential reviewers at the time of submission of their manuscript to Pertanika, but the editors will make the final choice. The editors are not, however, bound by these suggestions.

Notification of the editorial decision is usually provided within ten to fourteen weeks from the receipt of manuscript. Publication of solicited manuscripts is not guaranteed. In most cases, manuscripts are accepted conditionally, pending an author’s revision of the material.

As articles are double-blind reviewed, material that might identify authorship of the paper should be placed only on page 2 as described in the first-4 page format in Pertanika’s **INSTRUCTIONS TO AUTHORS** given at the back of this journal.

The Journal’s peer-review

In the peer-review process, three referees independently evaluate the scientific quality of the submitted manuscripts.

Peer reviewers are experts chosen by journal editors to provide written assessment of the strengths and weaknesses of written research, with the aim of improving the reporting of research and identifying the most appropriate and highest quality material for the journal.

Operating and review process

What happens to a manuscript once it is submitted to *Pertanika*? Typically, there are seven steps to the editorial review process:

1. The Journal’s Chief Executive Editor and the Editorial Board Members examine the paper to determine whether it is appropriate for the journal and should be reviewed. If not appropriate, the manuscript is rejected outright and the author is informed.

2. The Chief Executive Editor sends the article-identifying information having been removed, to three reviewers. Typically, one of these is from the Journal’s Editorial Board Members. Others are specialists in the subject matter represented by the article. The Chief Executive Editor requests them to complete the review in three weeks.

 Comments to authors are about the appropriateness and adequacy of the theoretical or conceptual framework, literature review, method, results and discussion, and conclusions. Reviewers often include suggestions for strengthening of the manuscript. Comments to the editor are in the nature of the significance of the work and its potential contribution to the literature.

3. The Chief Executive Editor, in consultation with the Editor-in-Chief, examines the reviews and decides whether to reject the manuscript, invite the author(s) to revise and resubmit the manuscript, or seek additional reviews. Final acceptance or rejection rests with the Editor-in-Chief, who reserves the right to refuse any material for publication. In rare instances, the manuscript is accepted with almost no revision. Almost without exception, reviewers’ comments (to the author) are forwarded to the author. If a revision is indicated, the editor provides guidelines for attending to the reviewers’ suggestions and perhaps additional advice about revising the manuscript.

4. The authors decide whether and how to address the reviewers’ comments and criticisms and the editor’s concerns. The authors return a revised version of the paper to the chief executive editor along with specific information describing how they have answered’ the concerns of the reviewers and the editor, usually in a tabular form. The author(s) may also submit a rebuttal if there is a need especially when the author disagrees with certain comments provided by reviewer(s).
5. The chief executive editor sends the revised paper out for re-review. Typically, at least one of the original reviewers will be asked to examine the article.

6. When the reviewers have completed their work, the Chief Executive Editor in consultation with the Editor-in-Chief and Editorial Board Members examine their comments and decide whether the paper is ready to be published, needs another round of revisions, or should be rejected.

7. If the decision is to accept, an acceptance letter is sent to all the author(s), the paper is sent to the Press. The article should appear in print in approximately three months.

The Publisher ensures that the paper adheres to the correct style (in-text citations, the reference list, and tables are typical areas of concern, clarity, and grammar). The authors are asked to respond to any minor queries by the Publisher. Following these corrections, page proofs are mailed to the corresponding authors for their final approval. At this point, only essential changes are accepted. Finally, the article appears in the pages of the Journal and is posted on-line.
Contents

Forward
Abu Bakar Salleh

Language and Linguistics

Endangered Intergenerational Language Transmission: Evidence from the Indigenous Dusun Society of Sabah, Malaysia

Translating Denotative Meaning in the Holy Quran: Problems and Solutions

Noureldin Mohamed Abdelaal

“Facebooking” Across Asia – Learning English Along the Way?

Muhammad Kamarul Kabilan, Malini Ganapathy, Eric Bray, Gin Gin Gustine and Mizna Qasim

Examining the Factors Mediating the Intended Washback of the English Language school-based Assessment: Pre-service ESL Teachers’ Accounts

Alla Baksh Mohd Ayub Khan, Mohd Sallehuddin Abd Aziz and Siti Hamin Stapa

MA-TEFL Thesis Writing Regulations in Iran: Supervisors and Examiners’ Comments and Feedback

Sima Shahmohammadi Kaleybar and Parviz Alavinia

Reading and Vocabulary Knowledge Development: Sustained Independent Reading (SIR) Among Malaysian Tertiary Students

Debbita Ai Lin Tan and Shaidatul Akma Adi Kasuma

ESL Reading Activities on Facebook among Malaysian University Students

Shaidatul Akma Adi Kasuma and Debbita Ai Lin Tan

Education

Teachers’ Work Culture in an Islamic Junior High School in Lampung, Indonesia

Siti Patimah

An Effective Leadership Model for Madrasah Principals in Indonesia

Zulkifli Musthan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploring College of Education Students’ Aversion to Teaching</td>
<td>149</td>
</tr>
<tr>
<td>Saleh Al-Busaidi</td>
<td></td>
</tr>
<tr>
<td>Teachers’ Practices in Encouraging Self Directedness in Learning</td>
<td>165</td>
</tr>
<tr>
<td>English as a Second Language</td>
<td></td>
</tr>
<tr>
<td>Arshad Abd Samad, Hazel Adria Jasiran Awang, Alif Fairus Nor</td>
<td></td>
</tr>
<tr>
<td>Mohamad and Sangeetha Palpanaban</td>
<td></td>
</tr>
<tr>
<td>Development of a Metacognition Scale in Learning Mathematics for</td>
<td>181</td>
</tr>
<tr>
<td>Senior High School Students</td>
<td></td>
</tr>
<tr>
<td>Kadir and Baso Intang Sappaile</td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>The Use of the Fair Value Accounting Method for Investment Property</td>
<td>195</td>
</tr>
<tr>
<td>in Indonesia</td>
<td></td>
</tr>
<tr>
<td>Aria Farah Mita and Sylvia Veronica Siregar</td>
<td></td>
</tr>
<tr>
<td>Relationship between the Industry Specialist Auditors and Financial</td>
<td>213</td>
</tr>
<tr>
<td>Reporting Timeliness under MFRS</td>
<td></td>
</tr>
<tr>
<td>Sherliza Nelson, Maslina Ahmad and Hamidah Mohamed</td>
<td></td>
</tr>
<tr>
<td>Effect of Inflation Rates</td>
<td></td>
</tr>
<tr>
<td>Sunday Simon, Norfaiezah Sawandi and Mohamad Ali Abdul-Hamid</td>
<td></td>
</tr>
<tr>
<td>Corporate Social and Environmental Responsibility Disclosure in</td>
<td>259</td>
</tr>
<tr>
<td>Indonesian Companies: Symbolic or Substantive?</td>
<td></td>
</tr>
<tr>
<td>Faisal Faisal, Merry Anna Napitupulu and Anis Chariri</td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td></td>
</tr>
<tr>
<td>Eclectic Islamic Economic Law: Multiakad in Indonesia’s Sharia</td>
<td>279</td>
</tr>
<tr>
<td>Banking</td>
<td></td>
</tr>
<tr>
<td>Mohamad Nur Yasin</td>
<td></td>
</tr>
<tr>
<td>Assessing the Effect of Managerial Power on Firm Performance through</td>
<td>293</td>
</tr>
<tr>
<td>the Perceptual Lens of Executive Remuneration</td>
<td></td>
</tr>
<tr>
<td>Farheen Akram, Muhammad Abrar ul Haq and Waheed Ali Umrani</td>
<td></td>
</tr>
<tr>
<td>Islamic Mortgage Products: How Aware are Malaysians?</td>
<td>311</td>
</tr>
<tr>
<td>Hanira Hanafi, Nor Hasniah Kasim and Syairah Diyana</td>
<td></td>
</tr>
<tr>
<td>Direct Agency Cost of Equity, Cash Flow Volatility and Dividend</td>
<td>327</td>
</tr>
<tr>
<td>Payout: Evidence from Pakistan</td>
<td></td>
</tr>
<tr>
<td>Haroon Hussain, Rohani Md Rus and Hamdan Amer Al-Jaifi</td>
<td></td>
</tr>
</tbody>
</table>
Foreword

Welcome to the First Issue of 2019 for the Journal of Social Sciences and Humanities (JSSH)!

JSSH is an open-access journal for studies in Social Sciences and Humanities published by Universiti Putra Malaysia Press. It is independently owned and managed by the university and run on a non-profit basis for the benefit of the world-wide science community.

This issue contains 48 articles; 3 are review articles and the rest are regular articles. The authors of these articles come from different countries namely India, Indonesia, Iran, Japan, Malaysia, Maldives, Nigeria, Oman, Philippines and South Africa.

Articles submitted in this issue cover various scopes of Social Sciences and Humanities including accounting, anthropology, architecture and habitat, arts and culture, consumer and family economics, economics, education, finance, language and linguistics, law, media and communication studies, political sciences and public policy, psychology, religious studies, sociology, sports, technology management and tourism.

Selected from the scope of language and linguistics is an article entitled “Facebooking” across Asia – Learning English along the Way?” by Muhammad Kamarul Kabilan, Malini Ganapathy, Eric Bray, Gin Gin Gustine and Mizna Qasim, fellow researchers from different countries, of Malaysia, Japan, Indonesia and Maldives. The study was carried out internationally, involving Malaysia, Japan, Indonesia and Maldives to investigate and compare higher education students’ perceptions of Facebook as an environment for learning English. Using survey questionnaire, they found that learners from the four countries view Facebook as an online environment that encouraged and facilitated incidental learning of English, but with a few variations according to the countries. The researchers also discussed several implications on the use of Facebook for English language teaching and learning in higher education. Details of the article is available on page 35.

Selected from the scope of education is an article entitled “Teachers’ Work Culture in an Islamic Junior High School in Lampung, Indonesia” by Siti Patimah, fellow researcher from Universitas Islam Negeri Raden Intan Lampung. The study was conducted to see how the cultural values such as integrity, professionalism, innovation, responsibility and exemplariness were utilized in working environment at Islamic junior high school in Indonesia. They conducted the study with Focus Group Discussion and interviews with teachers, leaders, school committees, staff and students from three different schools on Lampung, Indonesia, and yielded an unsatisfactory result. The reasons for this were lack of communication, limited human resources in the field of technology, and poor understanding of rules and applicable laws. Details of the article is available on page 123.

Selected from the scope of consumer and family economics is an article entitled “The Relationship between Attitude towards Money, Financial Literacy and Debt Management with Young Worker’s Financial Well-being” by Nuraini Abdullah, Sabri Mohamad Fazli and Afida Mastura Muhammad
Arif, fellow researchers from Universiti Putra Malaysia, Malaysia. The study attempted to analyse the relationship between attitudes towards money, financial literacy and debt management towards financial well-being of young workers. A total of 508 respondents aged 40 and below was selected using multi-stage random sampling technique. The study found out that analysis using Pearson’s correlation showed that there were a positive relationship between financial literacy, debt management, attitudes towards money towards financial well-being. Details of the article is available on page 361.

Selected from the scope of sports is an article entitled “Performance Strategies Across Team and Individual Sports of Negeri Sembilan Athletes” by Mazlan Ismail, a fellow researcher from Universiti Teknologi MARA, Malaysia. The study was carried out with the objective of to determine the differences in the use of performance strategies of Negeri Sembilan Sukan Malaysia (SUKMA) 2014 athletes during practice and competition. Test of Performance Strategies (TOPS) questionnaire was given to 142 athletes during the final camp before competing in the competition. They found out that individual athletes were better in using performance strategies during practice (i.e., goal setting, relaxation and self-talk) and competition condition (i.e., goal setting and self-talk) compared to team sport athletes. The study suggested the idea of using the psychological skills training for coaches and sport psychologist in order to help athletes improve their performance. Details of the article is available on page 685.

We anticipate that you will find the evidences presented in this issue to be intriguing, thought-provoking and useful in reaching new milestones in your own research. Please recommend the journal to your colleagues and students to make this endeavour meaningful.

All the papers published in this edition underwent Pertanika’s stringent peer-review process involving a minimum of two reviewers comprising internal as well as external referees. This was to ensure that the quality of the papers justified the high ranking of the journal, which is renowned as a heavily-cited journal not only by authors and researchers in Malaysia but by those in other countries around the world as well.

We would also like to express our gratitude to all the contributors, namely the authors, reviewers, Editor-in-Chief and Editorial Board Members of JSSH (Prof. Ain Nadzimah Abdullah and Dr. Vahid Nimehchisalem), who have made this issue possible.

JSSH is currently accepting manuscripts for upcoming issues based on original qualitative or quantitative research that opens new areas of inquiry and investigation.

Chief Executive Editor
Prof. Dato’ Dr. Abu Bakar Salleh
executive_editor.pertanika@upm.my
Development of a Metacognition Scale in Learning Mathematics for Senior High School Students

Kadir¹* and Baso Intang Sappaile²

¹Department of Mathematics Education, Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jakarta 15412, Indonesia
²Department of Mathematics Education, Universitas Negeri Makassar, Makassar, South Sulawesi 90222, Indonesia

ABSTRACT

The purpose of the study was to develop a scale of metacognition in mathematics for senior high school students using a confirmatory approach. There were 250 participants of tenth grade students from two senior high schools in Jakarta, Indonesia. The sample of the study was selected through simple random sampling technique. Data analysis was done by using the Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA). The study revealed that (1) 52 scale items were validated by a panel of experts with reliability coefficient among panellists that amounted to 0.830; (2) after piloting the metacognition scale with 250 students, 46 items were found with the validity range (0.197 to 0.804) and the reliability coefficient of 0.938; (3) Next, by using EFA analysis revealed three factors were found which were tested by CFA and yielded: constructs’ reliability of the self-regulation skills of 0.990, the type of knowledge to 0.980, and the executive control skills of 0.982. The final measurement model comprised 46 items and three factor were more appropriate as a scale for measuring the students’ metacognition in mathematics on senior high school level.

Keywords: Confirmatory factor analysis, construct validity, metacognition, reliability

INTRODUCTION

Metacognition plays an important role in raising awareness of learning and in the development of students’ mathematical thinking skills. In particular, the mathematical habit enables students to develop both mathematical thinking and disposition. According to NCTM (2000), students’ mathematical disposition are manifested in
the confidence in using mathematics, high expectations for one’s self, paying attention in class, persistence in problem solving, a high level curiosity, the desire and ability to communicate one’s opinion with others and metacognition.

In relation to the instruction, there are some studies show that there is significant relationship between academic success and metacognition. Students who have high metacognitive skill perform better in mathematics lessons than students who have low metacognitive skill (Boekaerts, 1997; Jaafar & Ayub, 2010; Özsoy, 2010).

Furthermore, students’ metacognition on a mathematics assignment refers to they start thinking what they know and how they are applying it before they start the assignment itself. Metacognitively speaking, a myriad of knowledge or abilities alone is not enough without having the ability to make appropriate decisions, organize, control, and use them in problem solving. Therefore, the ability of metacognition can be classified as involving executive skills, managerial skills, and self-control skills with regard to the learning of mathematics.

Moreover, the regulation of cognition refers to how well the students could regulate their own learning system (i.e., matching to goal setting, carrying-out strategies, and awareness of their problem faced). Schoenfeld (1992) argued that organizational skills and control and monitoring was of paramount importance in the process of resolving the problem. Since they are so important within the realm of the metacognitive, these processes should be emphasized by teachers in teaching and learning activities which use the problem-solving approach. The term self-regulation, monitoring, and control are covered within the definition of metacognition.

By developing metacognition skills, students know how to recognize the weaknesses and shortcomings in the process of thinking, revealing what people think, restoring the efforts that they have made, and deciding which element is understandable and not understandable. The more complete concept relating to metacognition is made clear by Marzano et al. (1988) who elucidated that metacognition was a skill that could be organized into multiple domains, namely: (1) self-organization (self-regulation skills), including a commitment to academic tasks, positive attitude of students toward academic work, and controlling attention to the needs of academic work, (2) the use of the kinds of knowledge (types of knowledge) which include; declarative knowledge, procedural, and conditional knowledge, and (3) control of the implementation (executive control skills), which include: skills to evaluate, plan and monitor the process skills.
Furthermore, Nitko (2001), using a 5-point scale to assess metacognition, argued that the use of sub categories of metacognition skills, could be realized by writing a statement that described the process of thinking, belief, or awareness of the types of special events. Assessment consists of two parts, covering the task itself and the criteria for assessing the student performance known as a rubric.

There were some previous studies which focusess on developed scale for measuring metacognitive was so called Metacognitive Awareness Inventory (MAI) (Schraw & Dennison, 1994; Sperling et al., 2002, 2004). The MAI was used as the basis to developing instrument which was self-report to measure metacognitive ability of students in mathematics lessons (Desoete, 2007; Özcan, 2010; Panaoura & Philippou, 2003). The studies above developed only two dimensions of metacognition on the primary school level, namely knowledge of cognition and regulation of cognition.

However, the current study develops metacognition scale with three dimensions in learning mathematics on the senior high school level. This metacognition scale is a prominent thing to be understood and it plays a significant role in instead of on supporting the students’ performance in learning mathematics. Therefore, the aim of this study is to examine the construct validity of metacognition scale which comprises of three dimensions, namely self-regulation skill, type of knowledge, and executive control skill based on theory of Marzano et al. (1988) using confirmatory factor analysis.

METHODS

Participants
There were 250 students (female=152, male=98) at the tenth grades of two senior high schools in Jakarta who participated in the study. Conformity of the items with dimensions and indicators, were assessed by the 13 (thirteen) expert panelists. The expert panelists consisted of three high school Math teachers who had experience teaching mathematics for more than 10 years and have been teaching high school at the tenth grades, three psychology professors, five lecturers in mathematics, as well as each 1 expert in linguistics and the researcher who participated as an expert to judge contruct validity of the metacognition scale (e.g., blue print, face, content, dan items).

Measures
Construct validity assessment was done by using the “Quantification of Content Validity” developed by Gregory (2004, p. 99). The scale used, 5-point Likert scale ranging from 1 (very inappropriate), 2 (inappropriate), 3 (less appropriate), 4 (appropriate), and 5 (very appropriate). Thus, the higher scores were given by the panelists indicated the more appropriate items measure the indicator of metacognition on mathematical tasks.

Determination of construct validity based on an assessment of panelists using content validity index formula accuracy/constructs, are as follows:

\[V = \frac{\sum_{i=1}^{n} |i - l_0|}{N(c-1)} \]

(Aiken, 1996, p. 91)
Where
\[V = \text{content validity index} \]
\[n = \text{count of point scale rater assessment results} \]
\[i = \text{point scale to-}i \ (i = 1, 2, 3, 4, 5) \]
\[l_0 = \text{lowest scale point} \]
\[N = \text{number of rater (expert)} \]
\[c = \text{number of points scale} \]

Based on the results of assessment by the expert panellists using the index validity (V), it was revealed that of the 60 item metacognition scale, 52 were considered as valid (as appropriate), and 8 as invalid (dropped), i.e., the item numbers: 9, 16, 22, 29, 36, 45, 51, and 58. V index values from 52 valid items which were recommended by the expert panelists as the appropriate items to measure the three factors of metacognition which ranging \((0.65 - 0.90)\) with the reliability of inter-panelist at .830. Furthermore, the scale weight value was determined empirically using 250 high school students of the tenth grades in Jakarta as the respondents. The method used was Method of Successive Interval (MSI). It was a method to converse the items on ordinal scale to interval scale. Results of the study revealed that of the 52 items measuring metacognition obtained 49 item instrument that can be weighted in the continuum scale 1, 2, 3, 4, and 5. Each item was measured on a 5-point Likert scale ranging from 1=never, 2=very seldom, 3=seldom, 4 = often and 5=very often. Examples of items are “Before deciding to use one of Math formulas, argument, or definition in finishing Math task, I asked to myself, which idea supports to finishing the test,” and “In solving Math task, I double check what part has been well mastered or has not yet, and on what part I should pay more attention or concentration.” Thus, the higher scores of participants indicate the higher metacognition on mathematical tasks.

Furthermore, using product moment correlation, on the 49-item scale metacognition, there were 46 valid items had a validity range \((0.197 \text{ to } 0.804)\), as well as Cronbach’s Alpha coefficient of 0.938. The second order path diagram of metacognition on mathematical task comprises of 46 items and three factors, namely self regulation skill (SRS), type of cognitive (TK), and executive control skill (ECS). Self regulation skill contained 16 items, type of cognitive consisted of 12 items, and executive control comprised 18 items.

Procedure

Procedure of development of the item using the stages according Djaali and Mulyono (2008) as follows: (1) the construct was based on the theory of variable metacognition, (2) developing the dimensions and indicators of variables, (3) making a blue print, (4) establishing the range parameter, (5) writing items, whether positive and negative, (6) validation through examination of experts, (7) revisions based on expert advice, (8) limited replication for testing purposes, (9) the process of empirical validation, through piloting items, (10) the analysis of items with EFA and CFA, (11) calculation of the reliability coefficient, and (12) compiling the accepted items for the final instrument.
Generally, the procedure of the development of metacognition scale in this study consists of three stages, namely define, design, and develop. The design of the development of metacognition scale can be presented in Figure 1 below.

Figure 1. The developmental design of metacognition scale
Based on the design procedure as seen in Figure 1, it was described as follow: The define stage started from analyzing and synthesizing various theories to formulate construct, dimension, and indicator of the metacognition variable. For example, the metacognition dimension, namely self-regulation skills, types of knowledge, and executive control skills. Furthermore as the example from the indicators of metacognition dimension as mentioned above, they are commitment to an academic task, positive attitude toward an academic task, controlling attention to the requirements of an academic task, declarative knowledge, procedural knowledge, conditional knowledge, evaluation skill, planning skill, and regulation process skill. Once the construct has been appropriate with the theory, then the conceptual definitions of metacognition variables are developed. The conceptual definition of metacognition that is used in this research is: “an awareness of the student’s ability about their own thought processes, and the cognitive monitoring mechanisms during the completion of math tasks.” The next step is to choose the type of scale, i.e., Likert scale with score range (1-5).

The design stage began with developing the blueprint of metacognition, and then followed by writing the item scale to get the scale draft-1. The draft-1 is then validated by expert panelists using a method proposed by Aiken (1996). Expert panelists were required to assess the accuracy of items in measuring the indicators by applying the rating scale: 1 (very inappropriate), 2 (inappropriate), 3 (less appropriate), 4 (appropriate), and 5 (very appropriate). In addition, the panelists also provided corrective records to each item. Then, the items were revised according to the panelists’ inputs to get the scale draft-2.

The develop stage started with the development of scale using Method of Successive Interval (MSI) based on the draft-2 to convert the ordinal scale into a continuum scale with involving participants of 250 tenth-grade students of senior high school. For example, an item “I do not do my math tasks which given by teacher, if I follow another activity at school” with 5 scales, namely: never=5; very seldom=4; seldom=3; often=2; and very often=1, are converted using the MSI into never=4.72; very seldom=3.52; seldom=2.51; often=1.69; and very often =1.00. Furthermore, the draft-2 in which has been converted then analyzed by using EFA approach to determine the number of the factors, and obtained three factors. The next step was a unidimensional test to assess the accuracy of the item in measuring the construct or factor using CFA approach and obtained construct reliability. The next step was evaluating the fit model to describe whether the items which measuring the construct had fit with data. This evaluation was to ensure that the construct measuring item was correct or in accordance with the data. All valid items were assembled into the final metacognition scale instrument.
Data Analysis

To determine the number of construct of metacognition variable, exploratory factor analysis (EFA) was used. Furthermore, to determine the validity of each construct of confirmatory factor analysis (CFA) was used. The both EFA and CFA analysis technique were subsequently used to determine the factors that make up the construct of the metacognition scale. Item factors obtained from EFA by using SPSS 23 then were tested with CFA by using Lisrel 88.00. Data were entered and screened using SPSS 23. Data were checked for missing data, outliers and multivariate normality prior to the CFA. In the present data analysis, the multivariate skewedness and a kurtosis test were used to test the assumption of multivariate normality.

CFA is considered done empirically with a valid indicator to measure the construct if the estimated standardized loading factor (λ) > 0.5 or have a statistical value of the t-test with p-value <0.05. An indicator is said to be dominant as forming constructs if it has λ² ≥ 0.70. Determination of Composite Reliability is based on internal consistency composite indicators measuring the construct. In general a construct, unidimensional, precise, and consistent can be measured by indicators/items, if Estimated coefficient CR ≥ 0.70 and VE ≥ 0.50 (Hair et al., 2010). Calculations Construct Reliability (CR) and Variance Extracted (VE) were determined by using the formula:

\[
CR_i = \frac{\left(\sum_{i=1}^{k} \lambda_i \right)^2}{\left(\sum_{i=1}^{k} \lambda_i \right)^2 + \left(\sum_{i=1}^{k} \theta_i \right)}
\]

and

\[
VE_i = \frac{\left(\sum_{i=1}^{k} \lambda_i \right)^2}{k}
\]

Where:
λ_i = loading factor to indicator to-i, \ θ_i = error variance indicator to-i
k = number of indicator in the model

According to Hair et al. (2010), using 4—5 criteria goodness of fit were regarded adequately to assess the feasibility of a model. These criteria mentioned should represent in the absolut fit indices, incremental fit indices, and parsimony fit indices. Absolute fit indices, covers recommended fit values: Chi-Square (p) > 0.05, the root mean square error of approximation (RMSEA)< 0.08, and goodness of fit index (GFI)> 0.90. Incremental fit indices covers: adjusted goodness of fit (AGFI)> 0.90, normal fit index (NFI)> 0.95, comparative fit index (CFI)> 0.90, incremental fit index (IFI)> 0.90, relative fit index (RFI)> 0.90. Parsimony fit indices covers: expected cross validation index (ECVI)-default < ECVI saturated and ECVI independence, Akaike’s information criterion (AIC) default < AIC saturated and AIC independence, Consistent Akaike’s information criterion (CAIC) default< CAIC saturated and CAIC independence, and parsimonious goodness of fit index (PGFI)> 0.60.
RESULTS

Exploratory Factor Analysis (EFA)

Determining the number from 46-item scales using EFA. Test Result of adequate factors by EFA in Table 1.

Table 1
KMO and Bartlett’s Test

<table>
<thead>
<tr>
<th>Kaiser-Meyer-Olkin Measure (KMO)</th>
<th>0.934</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett’s Test of Sphericity</td>
<td></td>
</tr>
<tr>
<td>Approx. Chi-Square</td>
<td>5915.989</td>
</tr>
<tr>
<td>df</td>
<td>1035</td>
</tr>
<tr>
<td>Sig.</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Based on analysis result as seen in Table 1, it shows that the feasibility test samples with obtained figures KMO of 0.934 which means very good, the figure was also above 0.5 and Bartlett’s significance test $\chi^2 = 5915.989$ the degree of freedom (df) = 1035 far below 0.05, then H_0 is rejected or an item that is already adequate for factor analysis.

The number of factors are formed from 46-item scale in Table 2.

Table 2
Factor variance explanation percentages of metacognition scale

<table>
<thead>
<tr>
<th>Factor</th>
<th>Initial Eigen-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>1</td>
<td>42.275</td>
</tr>
<tr>
<td>2</td>
<td>2.265</td>
</tr>
<tr>
<td>3</td>
<td>1.018</td>
</tr>
</tbody>
</table>

Based on analysis result as seen in Table 2, it shows that through EFA, there are three factors formed by Eigen value above 1.0. All three of these factors turned out to have total variance of 99.039% or greater than 65% as the criterion, thus empirically, is formed of three factors or dimensions that measure metacognition scale.

Confirmatory Factor Analysis (CFA)

CFA analysis techniques aim to re-estimate the accuracy of the items scale that measure factors that have been prepared based on a theoretical construct. CFA analysis technique used was Structural Equation Modeling (SEM) measurement model. Through analysis of the CFA, factors estimated were: (1) self-regulation skill, (2) types of knowledge, and (3) executive control skills. Summary results of the estimation, in Table 3.

The results of the analysis in Table 3, shows that all the standardized factor loadings are much larger than the recommended minimum criteria of 0.50. This means that every item of factors such as for self-regulation skills, types of knowledge and executive control skills has excellent validity and as the main factor in determining metacognition scale. Furthermore, it shows that the estimation of reliability metacognition scale gives a value of 0.984, or very good categorized and greater than the minimum criteria of 0.70.
Table 3

Standardized factor loading λ, construct reliability, and variance extracted

<table>
<thead>
<tr>
<th>Factor and items</th>
<th>Standardized Factor Loading (λ)</th>
<th>Composite Reliability (CR)</th>
<th>Variance Extracted (VE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self regulation skill</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS1</td>
<td>0.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS2</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS3</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS4</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS5</td>
<td>0.991</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS6</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS7</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS8</td>
<td>0.997</td>
<td>0.990</td>
<td>0.989</td>
</tr>
<tr>
<td>SRS9</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS10</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS11</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS12</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS13</td>
<td>0.986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS14</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS15</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRS16</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of knowledge</td>
<td>0.885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK17</td>
<td>0.974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK18</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK19</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK20</td>
<td>0.988</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK21</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK22</td>
<td>0.984</td>
<td>0.980</td>
<td>0.979</td>
</tr>
<tr>
<td>TK23</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK24</td>
<td>0.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK25</td>
<td>0.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK26</td>
<td>0.973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK27</td>
<td>0.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TK28</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive control skills</td>
<td>0.932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS29</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS30</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS31</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS32</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS33</td>
<td>0.992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS34</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS35</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS36</td>
<td>0.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS37</td>
<td>0.997</td>
<td>0.982</td>
<td>0.993</td>
</tr>
<tr>
<td>ECS38</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS39</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS40</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS41</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS42</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS43</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS44</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS45</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS46</td>
<td>0.989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>0.984</td>
<td>0.988</td>
</tr>
</tbody>
</table>
Model Fit

Testing suitability models aimed at studying how precise the measurement model proposed could fit the research data. The results of the analysis relating to the size of the model fit are in Table 4.

Table 4
Summary of fit model indices

<table>
<thead>
<tr>
<th>Goodness of Fit</th>
<th>Fit Indicators</th>
<th>Result</th>
<th>Judge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square (χ^2)</td>
<td>$p > 0.05$</td>
<td>$p = 0.999$</td>
<td>fulfilled</td>
</tr>
<tr>
<td>RMSEA</td>
<td>< 0.05</td>
<td>0.000</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>GFI</td>
<td>> 0.90</td>
<td>0.872</td>
<td>Unfulfilled</td>
</tr>
<tr>
<td>AGFI</td>
<td>> 0.90</td>
<td>0.860</td>
<td>Unfulfilled</td>
</tr>
<tr>
<td>NFI</td>
<td>> 0.90</td>
<td>0.995</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>CFI</td>
<td>> 0.90</td>
<td>1.000</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>IFI</td>
<td>> 0.90</td>
<td>1.000</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>RFI</td>
<td>> 0.90</td>
<td>0.995</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>ECVI (a)</td>
<td>4.719</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECVI for Saturated Model (b)</td>
<td>$(a) < (b)$</td>
<td>8.683</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>ECVI for Independence Model (c)</td>
<td>872.305</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model AIC (d)</td>
<td>1030.487</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated AIC (e)</td>
<td>$(d) < (e)$</td>
<td>2162.000</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>Independence AIC (f)</td>
<td>217204.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model CAIC (g)</td>
<td>1455.504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated CAIC (h)</td>
<td>$(g) < (h)$</td>
<td>7049.699</td>
<td>Fulfilled</td>
</tr>
<tr>
<td>Independence CAIC (i)</td>
<td>217411.993</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGFI</td>
<td>> 0.6</td>
<td>0.796</td>
<td>Fulfilled</td>
</tr>
</tbody>
</table>

DISCUSSION

Using self-report instruments, think aloud protocols, interview, and teacher questionnaires to measured metacognition have many limitations and difficulties in application and not the actual performance (Desoete, 2007; Sperling et al., 2002). This study was aimed at testing the construct validity of metacognition scale. Through the results from EFA and CFA, this study shows there are three factors formed, namely self-regulation skills, types of knowledge, and executive control skills. Furthermore, this study suggests that the three factors have very good internal consistency, amounting to 0.990; 0.980; 0.982 respectively. The achievement of an internal consistency through student engagement is in compliance with expert assessment results that also establish three
factors of construct metacognition, in which the reliability of the inter-expert-panelist is in a good category. Thus, all items to measure the construct metacognition recommended by the expert-panelists, are empirically valid through the engagement of participant students.

Self-regulation Skills

The metacognition scale items in the self-regulation skill dimension consist of student awareness to control the commitment, attitude, and attention to the task of Math subjects. The item scale of the commitment to an academic task contains the decision-making by students to complete the task, whether the task is pleasant or unpleasant. An example of the item is “Although a math assignment given by the teacher is not fun, I still try to do it my best.” The positive attitude toward an academic task contains the views related to the independence in completing the tasks. The essence of this view is that the successful completion of the task lies in the hard work of each, not on the luck, talent, or the help of others. Example of the item is “I am pleased to solve the mathematics tests that are given by the teacher in different ways.” Furthermore, the scale item of the controlling of attention to the requirements of an academic task is the awareness of the students to adjust their focus and attention to the objectives of the task completion. Example of the item is “When I am reading a mathematics book, I just focus on the important parts that are related to the mathematics tasks.”

Types of Knowledge

Metacognition scale items in the dimensions of types of knowledge consist of three types of knowledge that students use to respond to the mathematics tasks, namely declarative, procedural, and conditional knowledge. The declarative knowledge scale item is the knowledge that students use to accomplish the mathematics tasks, eg factual information needed, understand what must be done, and what will be doing. Example of the item is “I firstly solve the easier questions in doing the mathematics tests.” The items of the procedural knowledge scale related to the use of appropriate strategies to accomplish the task. Example of the item is “In order to be easier to understand the story type of the mathematics test, I start with posing questions: what is known? What is asked? and what data must be fulfilled?” Furthermore, the conditional knowledge scale item related to student awareness to find the reasons why certain procedures, strategies, or conditions are more appropriate to use. Example of an unfavorable item is “I confuse choosing formula/method to be used in solving the mathematics tests.”

Executive Control Skills

The metacognition scale items on the dimensions of executive control skills include the skills of evaluating skill, planning, and regulation processes skill. Item evaluation skill is the students’ assessment of the knowledge, identification of materials needed, and assessing the purpose of the tasks. Example of the item...
is “After finishing mathematics tasks, I asked to myself what I have learnt from the tasks.” *Planning skills* are used when students deliberately choose the procedures and strategies before and during the task. Example of the item is “In finishing the mathematics tests, I made some ways, then choosing the best one.” Furthermore, item *regulation processes skills* scale is the students’ skill in monitoring the progress of the tasks’ completion. Example of the item is “In finishing the mathematics tasks, I observe the successful part, failure part, and the part that is carefully revised.”

The findings above are slightly different from Schraw and Dennison (1994) who found two factor supporting awareness metacognition, i.e., knowledge of cognition and regulation of cognition. Internal consistency of these two factors are very well, ranging from 0.88 to 0.93. The finding also different from Özcan (2010) who founded that there was one factor and 14 items as construct validtiy of the scale of young pupils’ metacognitive abilities in mathematics scale in Turkish culture and the reliability was high (0.88).

The findings above are in line with Flavell (1976) theory that metacognition is knowledge or awareness of a person regarding the cognitive, for example, know the rules are relevant to the information and controlled consequently to the process which is associated to with cognitive objects in the problem solving process. Furthermore, the implications of measuring metacognition in the learning of mathematics requires metacognition strategies to facilitate students control weaknesses in learning and then fix this, the students can determine the best way of learning according to their own abilities, can solve mathematical problems, problems related to the learning process, and students can understand the extent of the success he has achieved in the study. This synergizing of metacognition in the learning process is appropriate to Du Toit and Du Toit (2013), at the eleventh grade students who found that the behavior of metacognitive corresponded to the first three stages of Polya (1956), i.e., understanding the problem, divising a plan, carrying out the plan, but did not correspond with stage-four, namely looking back. This respect resembles to Özsoy (2010), that there is significant and positive correlation between metacognition and mathematics achievement in the fifth-grade students. Furthermore, research results showed that 42% of total variance of mathematics achievement could be explained with metacognitive knowledge and skills.

The finding of this study asserts that the theory and the concept of metacognition as expressed by Marzano et al. (1988), that it is a skill that can be organized into: self-regulation skills, the use of types of knowledge, and executive control skills. This finding implies that metacognitive skills can help to identify weaknesses and deficiencies in the process of thinking mathematically, reveal what people think clearly, restore the efforts that have been made, and decide which element is understandable and not understood unidimensional, right and consistently be explained by three factors and 46 items, as conceptualized by the theory of metacognition.
CONCLUSION

The conclusions of this study are three factors that must be included in the development of a metacognition scale for mathematics high school students: (1) self-regulation skill as measured by commitment to the task, positive attitude toward the task, and control of attention to the task. (2) Types of knowledge consisting of declarative knowledge, procedural, and conditional. (3) Executive control skills are measured by the skills of evaluating, planning, and regulating processes. The three factors are the main factors which determining the students’ metacognition on the mathematical tasks.

Development of scale to measure metacognition in mathematics learning needs to be expanded in scope both populations, a branch of mathematics, material characteristics, approaches and strategies as well as education levels. This investigation is an important issue for future research, it might be possible to elaborate and use a different, such as combining aspects of the disposition and skill of metacognition. Moreover, the findings of this study have a number of important implications for future practice, especially in developing instrument metacognition for assessing mathematics learning. It is suggested that training in metacognitive learning and assessment models for teacher in secondary education can be taken into consideration. It may be important to promote the importance of metacognition for supporting student learning.

REFERENCES

The Editorial Board of the Journal of Social Sciences and Humanities wishes to thank the following:

Abdul Majid
(Monash University, Malaysia)

Abdul Wahab Juliana
(USM, Malaysia)

Adasivan Vijayalakshmi
(VIT University, India)

Adnan Trakic
(Monash University, Malaysia)

Ahmad Lone Fayaz
(PSAU, Saudi Arabia)

Ahmad Saiful Azlin Puteh Salin
(UITM, Malaysia)

Alis Puteh
(UUM, Malaysia)

Ang Boon Suen
(USM, Malaysia)

Ang Lay Hoon
(UPM, Malaysia)

Azizan Marzuki
(UITM, Malaysia)

Che Su Mustaffa
(UUM, Malaysia)

Deanna L. Sharpe
(The University of Missouri, USA)

Dessy Irawati-Rutten
(BNI Bank, Indonesia)

Ershadul Karim Mohammad
(UM, Malaysia)

Evan Lau
(UNIMAS, Malaysia)

Farzad Hejazi
(UPM, Malaysia)

Ghayth Kamel Shaker Al-Shaibani
(UCSI University, Malaysia)

Gisa Jahnichen
(Shanghai Conservatory of Music, China)

Goh Ying Soon
(UITM Terengganu, Malaysia)

Hamilton Thembu Mchunu
(Ekurhuleni South District of Education, South Africa)

Hardev Kaur Jujar Singh
(UPM, Malaysia)

Hasan Zulfiqar
(BIU, Bangladesh)

Hazliza Haron
(UITM, Malaysia)

Husniyah Abd Wahab
(UPM, Malaysia)

Ivor Timmis
(LMU, UK)

Jaime Orejan
(WSSU, USA)

Javed Iqbal
(University of Essex, UK)

Jeneifer C. Nueva
(CMU, Philippines)

Jennifer Tunga Janang
(UNIMAS, Malaysia)

Julia Lee Ai Cheng
(UUM, Malaysia)

Junaid M. Shaikh
(Curtin University, Malaysia)

Kamardin Hasnah
(UUM, Malaysia)

Kamisah Ariffin
(UITM, Malaysia)

Khairil Azmin Mokhtar
(IUUM, Malaysia)

Khaled Hussainey
(University of Portsmouth, UK)

Kulandayan Ramanathan
(FTMS University, Malaysia)

Laura Christ Dass
(UITM, Malaysia)

Lim Boon Hooi
(UM, Malaysia)

Mahendran Maniam
(UPSI, Malaysia)

Mahmud Mohd Jusan
(UM, Malaysia)

Maizaitulaidawati Md Husin
(UM, Malaysia)

Manimangai Mani
(UPM, Malaysia)

Maria Justine@Stephany
(UITM, Malaysia)

Mariam Adawiah Dzulkifli
(UUM, Malaysia)

Mary Susan Philip
(UM, Malaysia)

Mashita Abd Jabar
(UPM, Malaysia)

Mastura Jaafar@Mustapha
(USM, Malaysia)

Md Yusof Mohd. 'Atef
(UUM, Malaysia)

Melissa Ng Lee Yen Abdullah
(USM, Malaysia)

Melor Md Yunus
(UKM, Malaysia)

Moeed Ahmad Sandhu
(University of Salford, UK)
Contents

Forward
Abu Bakar Salleh

Language and Linguistics

Endangered Intergenerational Language Transmission: Evidence from the Indigenous Dusun Society of Sabah, Malaysia

Translating Denotative Meaning in the Holy Quran: Problems and Solutions
Noureldin Mohamed Abdelaal

“Facebooking” Across Asia – Learning English Along the Way?
Muhammad Kamarul Kabilan, Malini Ganapathy, Eric Bray, Gin Gin Gustine and Mizna Qasim

Examining the Factors Mediating the Intended Washback of the English Language school-based Assessment: Pre-service ESL Teachers’ Accounts
Alla Baksh Mohd Ayub Khan, Mohd Sallehuddin Abd Aziz and Siti Hamin Stapa

MA-TEFL Thesis Writing Regulations in Iran: Supervisors and Examiners’ Comments and Feedback
Sima Shahmohammadi Kaleybar and Parviz Alavinia

Reading and Vocabulary Knowledge Development: Sustained Independent Reading (SIR) Among Malaysian Tertiary Students
Debbita Ai Lin Tan and Shaidatul Akma Adi Kasuma

ESL Reading Activities on Facebook among Malaysian University Students
Shaidatul Akma Adi Kasuma and Debbita Ai Lin Tan

Education

Teachers’ Work Culture in an Islamic Junior High School in Lampung, Indonesia
Siti Patimah

An Effective Leadership Model for Madrasah Principals in Indonesia
Zulkifli Musthan