PROCEEDING

INTERNATIONAL CONFERENCE ON
EDUCATIONAL RESEARCH AND EVALUATION (ICERE)

“Assessment for Improving Students’ Performance”

May 29 – 31 2016
Rectorate Hall and Graduate School
Yogyakarta State University
Indonesia
Organized by:
Study Program of Educational Research and Evaluation
Graduate School, Yogyakarta State University
in Cooperation with Indonesian Educational Evaluation Association (HEPI),
and Center for Educational Assessment (PUSPENDIK) Ministry of Education and Culture
Foreword of the Chairman

Assalamualaikum wr. wb.

Good morning ladies and gentlemen.

Praise be to Allah who has given abundant blessings so that we can hold this international conference.

This conference is aimed at improving the quality of assessment implemented in schools and other institutions. The quality of assessment determines students’ ways of learning, so that it is hoped that the quality of education improves. Besides, this conference is a means of information exchanges in the forms of seminars dealing with results of research in educational assessment and evaluation. The expectation is that there is always improvement in educational assessment and evaluation methods, including in it is the instrument – both cognitive and noncognitive instruments.

The participants of this conference are the lecturers and teachers who teach educational assessment and evaluation, practitioners of assessment and evaluation, and researchers of assessment and evaluation. This conference can be held in cooperation with the Graduate School, Yogyakarta State University, Association of Educational Evaluation of Indonesia (HEPI), and Centre for Educational Research, Ministry of Education and Culture of Indonesia, supported by the Australian Council for Educational Research (ACER), Intel, Intan Pariwara Publisher, and many other institutions. For this reason, on behalf of the Organizing Committee, I would like to thank the Rector of Yogyakarta State University, Prof. Dr. Rochmat Wahab, M.Pd., M.A., and the Director of Graduate School, Yogyakarta State University, Prof. Dr. Zuhdan Kun Prasetyo, M.Ed., and all other institutions for their assistance and contribution that have made this conference possible. I would like to thank HEPI’s Local Coordination Unit and all sponsors for supporting this conference and also all the audience for participating in this conference.

To the committee members, both in Jakarta and Yogyakarta, I would like to thank them for the hard work they have performed and for the togetherness so that this conference can be held.

Last but not least, we apologize for all the inconveniences you might encounter during this conference. Please enjoy the conference.

Wassalamu’alaikum wr. wb.

Prof. Djemari Mardapi, Ph.D.
Foreword of the Chairman of Himpunan Evaluasi Pendidikan Indonesia (HEPI)

Assalamu’alaikum Wr. Wb.

Indonesian Association for Educational Evaluation (HEPI) is a professional organization in education holding in the high esteem the principles of professionalism and knowledge development in the field of educational and psychological measurement, assessment, and evaluation. HEPI was established in November 19, 2000 in Yogyakarta, with a vision to become a professional organization that excels in the field of evaluation and measurement in education and psychology in Indonesia. Its mission is to develop up-to-date methodologies of evaluation, assessment, measurement, and data analysis in education and psychology, as well as studies of policies and technical implementation of the field for improving Indonesian education quality.

As a professional organization, HEPI brings together experts, practitioners and interested persons in the field of evaluation, assessment, and measurement of education, psychology and other social sciences. HEPI is open to anyone who has the interest the field with no restriction in terms of educational background and working experiences. Hopefully, through HEPI, members of the association can sustainably develop themselves as professionals. The existence of HEPI is also expected to contribute to the improvement of the quality of national education through research, consultancy, seminar, conference, publication, and training for members of the organization and for public audiences.

HEPI organizes annual workshop and conference in cooperation with the Regional Chapter of HEPI and universities. In 2016, for the first time HEPI organized International Conference on Educational Research and Evaluation: Assessment for Improving Student’s Performance in May 29-30 2016 in Yogyakarta. This conference is jointly organized by HEPI and Yogyakarta State University and supported by the Center for Educational Assessment the Ministry of Education and Culture, Australian Council for Educational Research (ACER), INTEL Indonesia, and Intan Pariwara Publisher.

It is important to note that the choice of the HEPI 2016 conference theme is driven by the fact that the quality of our national education is still under expectation as shown by the results from School National Exam and international surveys conducted by some international agencies. HEPI believes that a number of factors contribute to the low quality of national education, including low teacher’s knowledge and skills in classroom and school assessment. Therefore, improving the competence of teachers in classroom and school assessment is urgently required. In this context HEPI as a professional organization and individual members of the organization have to play an active role in improving teachers’ competence in quality learning assessment.

In line with 2016 conference theme, HEPI invited two respected guest speakers, namely, Professor Geoffrey Masters, Ph.D., Director of the Australian Council for Educational Research (ACER), who presented a paper on Assessment to Improve Student Competency and Professor Frederick Leung, Ph.D., from the University of Hong Kong, who delivered a paper on the International Assessment for Improving Classroom Assessment.

As a tradition, in 2016 conference HEPI organized two pre-conference workshops. The first workshop is on the conceptual introduction of Rasch model by Jahja Umar, Ph.D., senior lecturer at the Faculty of Psychology, State Islamic University Jakarta and the second workshop was delivered by Heru Widiatmo, Ph.D., researcher at American College Testing (ACT) Iowa, United States on Measuring Higher Order Thinking Skills (HOTS).

On behalf of HEPI, I would like to express my heartfelt gratitude to Rector of the Yogyakarta State University, invited speakers, resource persons, HEPI regional chapters, sponsors, speakers, participants, invited guests, and organizing committee who have worked hard in making this international conference a success. Thank you very much for your participation and support and we are looking forward to seeing you in the next conference.

Last but not least, we hope that all of us get much benefit from this conference for enhancing Indonesian quality education through quality assessment.

Wassalamualaikum wr. wb.

Chairman,

BAHRUL HAYAT, Ph.D.
Table of Contents

Foreword of the Chairman

Foreword of the Chairman of Himpunan Evaluasi Pendidikan Indonesia (HEPI)

Table of Contents

Invited Speakers

- **Assessment for Improving Student Performance**
 Prof. Geoff Master, Ph.D.,
 International Assessment for Improving Classroom Assessment
 Prof. Frederick Leung, Ph.D.
 Educational Quality assurance For Improving Quality of Education
 Bahrul Hayat, Ph.D.

Parallel Session Speakers

I. Sub Themes:

- **Assessment Methods for Improving Student’s Performance**

 - Assessment Model for Critical Thinking in Learning Global Warming Scientific Approach
 Agus Suyaina, Undang Rosidin
 1

 - The Nationalism Attitude Assessment of Students of State Senior High School 1 Pakem Sleman
 Aman
 8

 - The Design of Formative Assessment by Inquiry Based Learning in Improving Students’ Self-Regulation
 Asih Sulistia Ningrum, Chandra Ertikanto
 14

 - Exploring the Use of One Meeting Theme-Based Extended Response A Practical Critical Thinking Assessment Tool for Classroom Practices
 Ayu Alif Nur Maharani Akbar, Rahmad Adi Wijaya
 20

 - Application of Instructional Model of Daily Assessment for Improvement of Processes Quality and Instructional Outcomes
 Benidiktus Tanujaya
 25

 - Assessing Student’s Pragmatics’ Knowledge at Islamic University of Riau
 Betty Sailun
 30

 - The Teacher’s Performance in Learning Process Management And Chemistry Learning Difficulties Identification
 Budi Utami, Sulistyro Saputro, Ashadi, Mohammad Masykuri, Nonoh Siti Aminah
 39
Components of Scientific Attitude for Teacher Observation in Physics Learning in Senior High School
Elvin Yusliana Ekawati

The Development of Psychomotor Competency Assessment on Physics Education Student of Palangka Raya University
Enny Wijayanti

Implementation of Authentic Assessment in Bahasa Indonesia Subject for Senior High School in West Sumbawa
Eny Rusmaini

Summative Assessment Design through the PjBL to Improve Students’ Higher-Order Thinking Skills
Erlida Amnie

Assessment Model Multiple Intelligences Learning Approach in Primary School Mathematics Subjects
Helmiah Suryani, Badrun Kartowagiran

Indicator Development of Learning Model Evaluation Instrument
Herpratiwi, Tien Yulianti, Adil Fadillah H, Bajawati

Performance Assessment in Model of Learning Superflex®
Huriah Rachmah

The Identification of Teachers Difficulties in Implementing of 2013 Curriculum at Elementary Schools
Ika Maryani, Sri Tutur Martaningsih

Aerobic Gymnastics, Fitness, and Academic Grade of Health Diploma Students from Remote Areas In Indonesia
Lucky Herawati, Maryana, Suharyono

Analyzing the Authenticity of Authentic Assessment
Luki Yunita, Salamah Agung, Eka Novi

Design of Performance Assessment Based on Problem Based Learning in Improving Students’ Self Regulation
Luthfi Riadina, Agus Suyatna, Undang Rosidin

Implementation of Performance Assessment to Increase Biology Learning Achievement by Using Inquiry Model
Murni Sapta Sari

Teachers’ Belief in Implementing Feedback for Students’ Writing in ESP Classroom
Nisrin Adelyna Darayani, Rini Amelia

Comparison of Character Value Between Lower Class and Upper Class at Salman Al Farisi 2 Elementary Integrated School
Rosaria Irijanti, Farida Agus Setiawati

Authentic Assessment in the Learning of Social Studies
Rudy Gunawan
The Implementation of Assessment Model Based on Character Building to Improve Discipline and Student’s Achievement
Rusijono

The Design of Performance Assessment Based Guided Inquiry for Empowering Students’ Argumentation Skills
Saiful Imam Ali Nuradin, Viyanti

The Influence of Class Climate and Self Concept towards Achievement Motivation and Physics Learning Result of Student at XI IPA Grade SMA Negeri 1 Kahu
Satriani, Kaharuddin Arafah, Muris

Assessment Cognitive for Physic: Development of Misconception Physic Test for Junior High School in Bangka Barat with Politomous Model (PCM)
Sikto Widi Asta, Dedek Andrian

Identifying of Undergraduate’s Analitical Ability about Electric Current in Transistor Using Isomorphic Assesment
Sri Hartini, Dewi Dewantara, Misbah, Syubhan Annur

A Performance-Based Assessment as a Current Trend in ELT: Investigating Its Washback Effects on Secondary-School Student Learning
Sumardi

Developing an Authentic Assessment Science Process Skills, Creative Thinking Skills and Manipulative Skills
Supahar, Dadan Rosana, Zamzam F A, Ryani Andryani, Neviana Wijayanti

Using of Self Assessment to Determine Science Process Skill and Concept Attainment Through Inquiri Learning of 8th Grade Student on 21th Junior High School in Ambon
Wa Nurrlina, K. Esomar, I. H. Wenno

Winarno

The Development of Vocational Interest Instrument for Career Exploration of Junior High School Students
Yudhi Satria Restu Artosandi, Sudji Munadi

Self-Assessment of Teachers of Mathematics Vocational High School in Yogyakarta City on the Performance Post-Certification
Zuli Nuraeni

II. Sub Themes:
- The Use Of Psychometric Method for Majoring Student’s Competence

The measurement Model of Historical Consciousness
Aisiah

Anbuso: Practical Software to Perform Item Analysis
Ali Muhson, Barkah Lestari, Supriyanto, Kiromim Baroroh

Estimating of Students Capability Growth in Vertical Equating with Rasch Model Test
Anak Agung Purwa Antara
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Test Characteristics of Learning Difficulties in Mathematics for Science Class 12th Grader</td>
<td>225</td>
</tr>
<tr>
<td>Apri Triana, Heri Retnawati</td>
<td></td>
</tr>
<tr>
<td>Assessing Science Process Skills using Testlet Instrument</td>
<td>231</td>
</tr>
<tr>
<td>Ari Syahidul Shidiq, Sri Yamtinah, Mohammad Masykuri</td>
<td></td>
</tr>
<tr>
<td>The Effect of Multiple Choice Scoring Methods and Risk Taking Attitude toward Chemistry Learning Outcomes (An Experiment at SMA Negeri 13 Kota Bekasi, West Java)</td>
<td>235</td>
</tr>
<tr>
<td>Awaluddin Tjalla, Sari Fitriani</td>
<td></td>
</tr>
<tr>
<td>Development of Personal Integrity Scale: Construct Validity</td>
<td>242</td>
</tr>
<tr>
<td>Bambang Suryadi, Yunita Faela Nisa, Nenang Tati Sumiati</td>
<td></td>
</tr>
<tr>
<td>Argument-based Validity of Situational Judgment Test for Assessing Teaching Aptitude</td>
<td>248</td>
</tr>
<tr>
<td>Budi Manfaat</td>
<td></td>
</tr>
<tr>
<td>Horizontal Equating in Accounting Vocational Theory Test Based on Mean/Mean Method of Item Response Theory</td>
<td>253</td>
</tr>
<tr>
<td>Dian Normalitasari Purnama, Sigit Santoso</td>
<td></td>
</tr>
<tr>
<td>The Effect of Number of Common Items on the Accuracy of Item Parameter Estimates with Fixed Parameter Calibration Method</td>
<td>259</td>
</tr>
<tr>
<td>Dina Huriaty</td>
<td></td>
</tr>
<tr>
<td>Analysis of Inter-Rater Consistency in Assessment Final Project Fashion Study Program</td>
<td>265</td>
</tr>
<tr>
<td>Emy Budiasusti</td>
<td></td>
</tr>
<tr>
<td>Using Fuzzy Logic to Select Item Test in Computerized Base Testing</td>
<td>269</td>
</tr>
<tr>
<td>Haryanto</td>
<td></td>
</tr>
<tr>
<td>An Application of the Generalized Logistic Regression Method in Identifying DIF (Analysis of School Examination in Soppeng)</td>
<td>276</td>
</tr>
<tr>
<td>Herwin</td>
<td></td>
</tr>
<tr>
<td>Effects of Complexity Matter and Grouping Students of the Statistics Analysis Capabilities</td>
<td>284</td>
</tr>
<tr>
<td>Ismanto</td>
<td></td>
</tr>
<tr>
<td>Construct Validity of the TGMD-2 in 7–10-Year-Old Surakarta Children with Mild Mental Disorder</td>
<td>289</td>
</tr>
<tr>
<td>Ismaryati</td>
<td></td>
</tr>
<tr>
<td>Measurement of the Quality of Mathematics Conceptual Understanding through Analysis of Cognitive Conflict with Intervention</td>
<td>296</td>
</tr>
<tr>
<td>Iwan Setiawan HR, Ruslan, Asdar</td>
<td></td>
</tr>
<tr>
<td>Modification of Randomized Items Selection and Step-Size Based on Time Response Model to Reduce Item Exposure Level of Conventional Computerized Adaptive Testing</td>
<td>302</td>
</tr>
<tr>
<td>Iwan Suhardi</td>
<td></td>
</tr>
<tr>
<td>Characteristics of an Instrument of Vocational Interest Scales</td>
<td>310</td>
</tr>
<tr>
<td>Kumaidi</td>
<td></td>
</tr>
<tr>
<td>Rasch Model Analysis for Problem Solving Instrument of Measurement and Vector Subject</td>
<td>315</td>
</tr>
<tr>
<td>Mustika Wati, Yetti Supriyati, Gaguk Margono</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of Mathematical Reasoning Ability of Elementary School Students Using Timss Test Design
Noening Andrijati

The Accuracy of Testees’ Ability Estimation of The Essay Test and Testlets in Mathematics Through The Graded Response Model (GRM) Application
Purwo Susongko, Wikan Budi Utami

The Comparison of Logistics Model on Item Response Theory: 1 Parameter (1pl), 2 Parameters (2pl), And 3 Parameters (3pl)
Rida Sarwiningsih, Heri Retnawati

Validity and reliability examination of indicators development materials instruction at Elementary School base on Curriculum 2013
Rochmiyati

Analysys Item Information Function on the Test of Mathematics
Rukli

Misuses Cronbach Alpha On Achievement Tests
Satrio Budi Wibowo

Item Discrimination of Two Tier Test on Hydrolysis of Salt
Sri Yamtinah, Haryono, Sulistygo Saputro, Bakti Mulyani, Suryadi BU

An Analysis of Test Quality by Using ITEMAN
Tia Nur Istianah, Desrin Lebagi

An Analysis of Person Fit Using Rasch Model
Yessica Mega Aprita, Yolandaru Septiana

Detecting Students Learning Difficulties Using Diagnostic Cognitive Tests
Yuli Prihatni

III. Sub Themes:
- Developing Instruments of Educational Assessment

Development and Implementation of Higher Order Thinking Skills Instruments in Physics Education
A. Halim, Yusrizal

Developing Picture Series and Vocabulary to Increase English Speaking Skill
Agustina Ellyana, Ketut Martini and Agus Risna Sari

Indonesian Adaptation Scale of Zung Self-Rating Anxiety Scale (SAS)
Alfiannor Luthfi Hasain

Development Hypothetical Model Resources Management Studies Teachers of Hindu Religion
Aris Biantoro, I Made Sutharjana, Wayan Sukarlinawati

Indonesian Adaptation of Organizational Commitment Questionnaire from Meyer & Allen, 2004
Baqiyatul Auladiyah
Creativity Problems Test Form Students Complete Description of Learning Connection with Learning Outcomes Counting Mathematics in Primary
Darmiyati

Effectiveness Guided Discovery Approach Through Cooperative Learning Think Pair Share (TPS) Type in Terms of Students’ High Order Thinking Skill (HOTS)
Deny Sutrisno

Indonesian Adaptation on Scale of Readiness for Organizational Change
Dharan Atasya Rakhmat

Developing Achievement Tests in Physics For Classroom Assessment
Dhien Astrini, Kumaidi

The Development of Evaluation Model Education Life Skill Program Out of School Education
Edi Subarkah

Development of Performance Assessment in Guided Inquiry Learning to Improve Metacognitive Skills and Student’s Achievement
Endah Handayani, Sunarmi, Murni Saptasari

Design Student Development Work Sheet (Learning Cycle) 5E to Improve Student Learning Outcomes High School Class X
Feryco Candra, Chandra Ertikanto

Development of Vocational Interest Scale: A preliminary study of the psychometrics properties*
Firmanto Adi Nurcahyo

Contextual Approach Using Pictures as a Media Increased Result and Motivation of Mathematical Learning (Mathematical Learning of Fractional Addition by Equalizing the Denominator)
Ihsana El Khuluqo, Ningrum Rosyidah

The Content Validity of the Evaluation Model in the Affective Domain in Islamic Education Instruments
Iskandar Tsani

Developing Science Process Skill Instrument of Islamic Senior High Schools
Kadir, Sri Wahyuningsih, Abd. Rahman A. Ghani

Online Exam Model of Item Response Theory Based Cat Using Moodle Learning Management System
Khairawati

Developing an Accreditation Model of Secondary School
Marjuki, Djemari Mardapi, Badrun Kartowagiran

Developing an Instrument for Assessing the Performance of High School Physics Teacher
Nurul Fitriyah Sulaeman, Badrun Kartowagiran

Analysis Instruments Test Reading for Academic Purpose Students of English Education Unisnu Jepara
Nusrotus Sa’idah, Hayu Dian Yulistianti
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Evaluation Model Design with Multiple Choice Tests for Field Studies Exact Sciences Nyenyep Sriwardani</td>
<td>502</td>
</tr>
<tr>
<td>Bhagavad Gita Video for Hinduism Education Lampung Nyoman Siti, I Komang Arteyasa, Ni Made Indrayani</td>
<td>506</td>
</tr>
<tr>
<td>Development of Authentic Assessment Instrument at Grade Four Elementary School in Malang Puri Selfi Chollifah, Muhardjito, Eddy Sutadji</td>
<td>511</td>
</tr>
<tr>
<td>Model Employee Performance Evaluation of Economics Graduate Degree in Bali Putri Anggreni</td>
<td>517</td>
</tr>
<tr>
<td>Hypothetical Model Development of Electrical Torso Learning Media Circulation System for Students Skill Formation of Critical Thinking and Scientific Attitude Senior High School in Lampung Timur Ririn Noviyanti, Sisca Puspita Sari Nasution</td>
<td>523</td>
</tr>
<tr>
<td>Developing a Creative Thinking Assessment Model for Kindergarten Teachers Risky Setiawan</td>
<td>531</td>
</tr>
<tr>
<td>Indonesian Adaptation Scale for Job Content Questionnaire (JCQ) Sandra Jati Purwantari</td>
<td>539</td>
</tr>
<tr>
<td>Development of Assessment Instruments of Art Painting Production Integrated With Character for Assessing Learners’ Field Work Practice in Vocational High School Trie Hartiti Retnowati, Djemari Mardapi, Bambang Prihadi</td>
<td>546</td>
</tr>
<tr>
<td>Analyzing the Quality of English Test Items of Daily, Mid Semester and Final School Examinations in Bandar Lampung: (Assessment and Evaluation in Language Teaching) Ujang Suparman</td>
<td>556</td>
</tr>
<tr>
<td>Developing A Pedagogical Commitment Instrument Wasidi</td>
<td>567</td>
</tr>
<tr>
<td>Adaptation and Construct Validation of the Indonesian Version of the Utrecht Work Engagement Scale Yulia</td>
<td>574</td>
</tr>
<tr>
<td>IV. Sub Themes:</td>
<td></td>
</tr>
<tr>
<td>- Program Evaluation for Improving Quality of Education</td>
<td></td>
</tr>
<tr>
<td>The Effectiveness of The Boarding Teacher Professional Development Program: an Approach of Process Evaluation Friyatmi</td>
<td>579</td>
</tr>
<tr>
<td>The Effect of Formative Test Types and Attitudes toward Mathematics on Learning Outcomes Hari Setiadi, Sugianto, Rini</td>
<td>584</td>
</tr>
<tr>
<td>An Evaluation Model of Character Education in Senior High School Hari Sugiharto, Djemari Mardapi</td>
<td>591</td>
</tr>
</tbody>
</table>
An Evaluation on the Implementation of Lesson Plans for Early Childhood Education Center (PAUD) Located Around IAIN Surakarta

Hery Setiyatna

The Effect of Cooperative Learning Model Type Group Investigation with Self Assessment Reinforcement and Learning Interest toward the Physics Learning Result of Students at Grade XI SMA Negeri 1 Watubanga Kolaka

I Gede Purwana Edi Saputra, H.M. Sidin Al

Effect of Cognitive and Emotif Techniques in Counseling Rational Emotif Behavior Therapy toward Tendency Aggressive Behavior Based on Type of Personality Among Students of SMP Negeri 4 Denpasar

I Wayan Susanta

THE EVALUATION OF THE SCHOLARSHIP DEGREE PROGRAM FOR THE ISLAMIC RELIGIOUS EDUCATIONAL TEACHERS AT SCHOOL

Ju’subaidi

The Influence of Teacher Pedagogical Competence and Emotional Intelligence towards Motivation and Physics Learning Result of Student at XI IPA Grade SMA Negeri 1 Watansoppeng

Kaharuddin Arafah, Adnani Yuni, Muris

Evaluating Policy Implementation Indicators in Decentralized Schools

Lilik Sabdaningtyas, Budi Kadaryanto

Identification Critical Thinking Skills of SMA Muhammadiyah 1 Banjarmasin Students to the Matter Dynamic Electricity

Misbah, Salyidah Mahtari, Sayid Muhammad Hasan

The Influence of the Socio-Cultural-Based Learning Device to Student Academic Performance

Muhammad Nur Wangid, Ali Mustadi

The Influence of Teacher Professional Competence and Interpersonal Intelligence Towards Motivation and Physics Learning Result of Student at XI MIA Grade Sma Negeri 1 Pangkajene

Murniaty M, Kaharuddin Arafah, Subaer

Evalution Study to Career Guidance Service-Program of Vocational High Schools in Banjarmasin

Nina Permatasari, Djaali, Ma‘ruf Akbar

Cipp Evaluation of The Learning in Cultural Dialogue During Unsoed Intercultural Summer-Camp

Oscar Ndayizeye, Agrégé TEFL

Evaluating Basic English Test Items for Non-English Students from Teachers Perspectives

Prihantoro

Is the German Language Text Too Short for the Senior High School Students?

Ryan Nuansa Dirga, Primardiana Hermilia Wijayati
Evaluation of Managerial Leadership Ability of Senior High School Headmasters in Sleman
Sabar Budi Raharjo, Lia Yuliana

Evaluation of Social Attitude Core Competence (KI-2) Implementation in State Elementary School in Yogyakarta
Siti Aminah, Yulian Sari

The Evaluation of The Foreign Language Intensification Program for the Students of UIN Allauddin Makassar
Sitti Mania

Evaluation of the Civilizing Moral Character Implementation in Elementary School
Sulthoni

The Evaluation of 2013 Curriculum Implementation on Thematic Integrative toward Math Subject for Elementary School In East Lombok
Syukrul Hamdi
Developing Science Process Skill Instrument of Islamic Senior High Schools

Kadir 1 Sri Wahyuningsih 2, Abd. Rahman A. Ghani 3

1 \textit{kadir@uinjkt.ac.id}, Dosen UIN Syarif Hidayatullan Jakarta
2 \textit{umifathur.18@gmail.com}, Guru Biologi MAN 17 Jakarta
3 \textit{abdulrahman.ghani@yahoo.co.id}, Direktur dan Dosen SPs. UHAMKA

Abstract - The objective of this study was to develop a reliable and valid instrument for students’ science process skill in biology subject at Islamic Senior High Schools in DKI Jakarta. Five Islamic Senior High Schools in DKI Jakarta was selected by random sampling technique from 22 Islamic Senior High Schools in DKI Jakarta which focused on twelfth grade. This study used a research and development method. The result of study reveals that (1) From 48 items representing every dimension and the indicator showed that only 46 items are categorized valid after assessed by 20 panelist based on the value of CVR, which obtained the highest CVR value of 1.00 and the lowest was 0.30. (2) From the 46 items which had been tested and showed that only 41 items were categorized as valid based on item analysis ‘ITEMAN’ program, it was founded that items were valid which have pointbiserial coefficient >0.20 and reliability coefficient of 0.867 which means that the reliability of the instrument science process skills are very good. (3) From the 41 items assessed for compliance which is valid between the instrument models and the data in the field using CFA, with construct realliability 0.986 and obtained minimum value Function Fit Chi-Square = 744.06 ($P = 0.06$) which indicates that the instrument developed a new appropriate approaches. Based on the result above, it can be drawn conclusion that observing, classifying, measuring, inferring, predicting, and communicating can measure the students’ science process skill.

Keywords: validity, realiability, science process skill, confirmatory factor analysis.

I. INTRODUCTION

Achieving of the n Japanese children in TIMSS 2011 on the rank 40 and at the position 38 from 42 countries shows the low of learning achievement in learning science and mathematics in our country. Instruction or learning has not ... between hands-on and minds-on, which is not give any impact and benefit to the science teachers because testing system that only measuring the concept mastery and definitions. (Rustaman, 2007: 818). Another resemble opinion as stated by Elin Driana (Kompas, December 12, 2012) that “instruction in top countries rank in PISA is more focuses on higher reasoning level has changed instruction which material mastery oriented for preparation to test and memorizing and drills. The changing of focus on instruction needs the teachers who have ability in creating learning atmosphere which supporting it”

The main cause of the low science process skill is lack of thinking skill because of the lack of and less of tests which measure the achievement about thinking. process skill involves intellectual skill, manual, ans social. Intellectual skill is process skill which involving thinking, manual skill involves using tools and equipments, and social skill involves social interaction in teaching and learning and discussing based on the result of observation.

Rustaman (2007) states that science process skill is scientific inquiry, procedure that guides to gain knowledge and to give definition which more meaningful to the students. Through developing science process skill can be given the opportunity to develop the concept and process simultaneously. According to Rezba, et al. (Patta Bundu, 2006: 24), there are some types of science process skill, namely: observing, classifying, measuring, inferring, predicting, and communicating.
Based on the problems above, it indicates that lack of empowering the test property which measuring the achievement about thinking as one of the cause of low science process skill in science education. So that it is needed an instrument which objective, valid, reliable to assess students’ science skill. Based on some problems elucidated above, the objective of the research are to develop scienee process skill in Islamic Senior high school in Biology subject.

The results of this research are expected to give some significant contributions not only theoretically but also practically as follows: (1) Academically, can enrich the measurement theory, especially science process skill; (2) Practically, can be used to analyze a profile of mastery of science process skill for students.

II. METHOD

This research method used in this investigation was Research and Development. Nest, this research adapted Borg & Gall (Sugiyono, 2010: 271) which are consist of 10 stages to be 5 stages, namely: (1) product analysis which will be developed; (2) developeing of initial product; (3) product validation; (4) field try-out; and (5) product revision.

There are some stages in developing science process skill instrument, they are as follows:
1. Developing blue print.
2. Constructing item thorough discussion among Biology teachers.
3. Revising instrument based on expert judgement.
4. Trying-out stage one to know the essential indicator and readability.
5. Trying-out empirically to know validity and reliability.
6. Testing Fit Model through conformatory factor analysis.

A. Validity Testing

In developing instrument to measure the science process skill, the content validity, theoretically conducted by an expert and 20 Biology teachers to make sure that the test items are relevant and represent all domain are measured. Content validity is measured by using Content Validity Ratio (CVR) with Lawshe formula as follows:

\[
CVR = \frac{(Ne - N)}{N} \frac{2}{\pi}
\]

Keterangan:
Ne: total number of pannelist who assess esensial, N: total of panelist

Valid item if CVR ≥ minimum value CVR for 20 raters as 0.42. empirical stage one with ITEMAN program. Coefficient validity stated as a good category if coefficient is higher than 0.20.

Furthermore conducted parameter estimated testing on loading factor (λ) by using CFA. The criteria which using was valid items if \(\lambda > 0.5 \) or t-statistical testing of parameter \(\lambda \) higher than 1.96.

B. Reliabilitas

The concept of reliability in this respect meant that reliability of measurement tool related to the problem of measurement error. According to Menurut Sudaryono (2012: 155), reliability related to the error in choosing sample which refers to inconsistency of the measurement result if the measurement reconducted on different group.

The level of reliability in this research estimating based on the score of reliability coefficient calculated by using formula (Wijanto, 2008: 175):

\[
\text{Construct reliability (CR)} = \frac{\left(\sum \text{loading}\right)^2}{\left(\sum \text{loading}\right)^2 + \sum \varepsilon_i}
\]

\[
\text{Variance extracted (VE)} = \frac{\sum \text{loading}^2}{N}
\]

Model reliability estimation regarded good if CR ≥ 0.70 dan VE ≥ 0.50.
III. RESULT

The findings of each stage of instrument development of science process skill is presented as follows.

A. Theoretical Validation (Tried-out stage 1)

Tried-out rationally by expert on the property of instrument of science process skill was conducted to expert teacher and some Biology teachers and so as expert teacher. The panelists perused each of the basic science process skill based on the indicators which were designed, and confirmed the fitness of test items with the way of giving score for essential items (E) and inessential test items (IE). The results of grading given by the panelists on test items of science process skill, show that there are 6 dimensions which are consist of 48 items have been validated and there were 46 items considered valid and 2 items not valid, with the scale score of CVR from 0.30 up to 1.00.

B. Empirical validation (The Second Stage Try-out)

The result of empirical testing of the instrument of students' science process skill to 397 grade XII of Islamic senior high school in DKI Jakarta. Meanwhile, the results based on ITEMAN program, reveals that there are 5 test item were not valid (score of Point Biserial < 0.20) they are number 1, 5, 8, 10, and 26. So, the total number of valid items are 41 with reliability coefficient (KR-20) is 0.867, this value or score can be inferred that the test items high are developed have high reliability.

C. Confirmatory Factor Analysis (CFA)

The result of parameter analysis λ (loading factors) used CFA reveals that all item has value or score $\lambda > 0.5$ or statistical value/score based on t-test > 1.96, with scale score λ: observation dimension consist of 13 test item, was (0.75–2.75), classification dimension consists of 5 items (0.56–2.17), measure 2 items (1.00), inference 5 items (1.00–1.13), prediction 4 items (0.08–1.00), and communication dimension consist of 5 items (0.52–1.00). This results show that there are 41 items have good validity to measure 6 dimension of science process skill.

Next, the result of Construct Reliability analysis (CR) and variance extracted (VE), shows that observation (CR=0.99; VE= 0.93), classification dimension (CR=0.97; VE= 0.88), measure (CR=1.00; VE= 1.00), inference (CR=0.98; VE= 0.92), predict (CR=0.87; VE= 0.77), and communication dimension (CR=0.87; VE= 0.78). The reliability testing shows that the score CR > 0.70 dan VE > 0.50. So that the reliability estimation both all dimension and individual one based on dimension and factor shows that the instrument of science process skill has a very good internal consistency.

The result as depicted through the path diagram below shows that the instrument of science process skill based on dimensions, covers classification observation, measure, inference, predict, and communicate (Figure 2).
Furthermore, the testing of the model appropriateness meant to measure about to what extent is the measurement model which is proposed fit or appropriate with the research data. The following statistical testing is to test which is the fit/appropriate indicator. The statistical formulas used were Chi-Square, RMSEA, ECVI, AIC, CAIC, NFI, NNFI, PNFI, CFI, IFI, RFI, GFI, CN, RMR, and AGFI. The result based on analysis through using Fit Model can be presented in the following table.
Table 1. Summary of fit model

<table>
<thead>
<tr>
<th>GOF Criteria</th>
<th>Fit Indikator</th>
<th>Estimation</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-Square (p)</td>
<td>Small score p > 0.05</td>
<td>(\chi^2 = 744.06) ((p = 0.06))</td>
<td>good</td>
</tr>
<tr>
<td>NCP Interval</td>
<td>Small interval score that narrow</td>
<td>352.82</td>
<td>Fairly good</td>
</tr>
<tr>
<td>RMSEA</td>
<td>RMSEA ≤ 0.08 P ≥ 0.05</td>
<td>0.049</td>
<td>good fit</td>
</tr>
<tr>
<td>ECVI</td>
<td>Small score and near to ECVI Saturated</td>
<td>M* = 2.14</td>
<td>good fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S* = 2.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I* = 2.98</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>Small score and close to AIC Saturated</td>
<td>M* = 846.82</td>
<td>good fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S* = 870.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I* = 1323.11</td>
<td></td>
</tr>
<tr>
<td>CAIC</td>
<td>Small score and close to CAIC Saturated</td>
<td>M* = 1140.87</td>
<td>(good fit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S* = 3038.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I* = 1323.11</td>
<td></td>
</tr>
<tr>
<td>NFI</td>
<td>NFI ≥ 0.90</td>
<td>0.34</td>
<td>Fairly good</td>
</tr>
<tr>
<td>NNFI</td>
<td>NNFI ≥ 0.90</td>
<td>0.44</td>
<td>Fairly good</td>
</tr>
<tr>
<td>CFI</td>
<td>CFI ≥ 0.90</td>
<td>0.48</td>
<td>Fairly good</td>
</tr>
<tr>
<td>IFI</td>
<td>IFI ≥ 0.90</td>
<td>0.51</td>
<td>Fairly good</td>
</tr>
<tr>
<td>RFI</td>
<td>RFI ≥ 0.90</td>
<td>0.28</td>
<td>Fairly good</td>
</tr>
<tr>
<td>CN</td>
<td>CN ≥ 200</td>
<td>236.62</td>
<td>(good fit)</td>
</tr>
<tr>
<td>RMR</td>
<td>Stand RMR ≤ 0.05</td>
<td>0.012</td>
<td>Fairly good</td>
</tr>
<tr>
<td>GFI</td>
<td>GFI ≥ 0.90</td>
<td>0.89</td>
<td>Marginal fit</td>
</tr>
<tr>
<td>AGFI</td>
<td>AGFI ≥ 0.90</td>
<td>0.87</td>
<td>Marginal fit</td>
</tr>
</tbody>
</table>

\(M^* = \text{Model}; S^* = \text{Saturated}; I^* = \text{Independence}\)

Based on the result as seen in the table above, the main fit indicator has the Goodness of Fit and it is categorized ‘good’. This means that the result of conceptual model of science process skill testing which is proposed is ‘fit’ or appropriate with the data.

IV. DISCUSSION

The instrument of students’ science process skill of Islamic senior high school in Biology subject which is developed based on theoretical analysis and expert investigation then followed by trying-out empirically that has been developed can be used for measuring science process skill.

Research finding reveals that, observed from the average factor load, basic science process skill, in the sequence of the lowest-higest validity the skill in succession, namely: (a) predict, (b) communicate, (c) inference, (d) classify, (e) observe, and (f) measure. Inference skill is the skill to draw conclusion and description from the observation result. If the observation is an experience which is achieved through one or two human senses, so inference is interpretation or description on the observation result. This skill is the most important science process because the correctness of the acience or knowledge achieved is depend on appropriateness and accurateness of the observation result. The ability to conduct an observation the ability to think is the basis skill in science, and including the skill dimension which is categorized as a hard aspect in this research. The finding of this research in line with Subadi’s research result (2009), which reported that the ability to think divergent in respect of data/information recording skill is the basic skill which is the most difficult, meanwhile the easiest is observation skill. The ability to think divergence in the respect of inference making skill and process skill is the most difficult skill, while the easiest skill is making prediction. Divergent thinking ability in doing investigation shows the lowest score up to the highest one in designing, doing, reporting, and investigating.

The finding of this research support the theory and concept of science process skill which was founded by Rustaman (2007) that the science process skill was the science inquiry doman, procedure which guides in achieving knowledge and giving definition that is more meaningful for students. Furthermore Rezba, et al. (1995) gives more detail description between basic science process skill and integrated science process skill with the six basic science process skill, shich covers: observing, classifying, measuring, inferring, predicting, dan communicating.

Referring to the result of model testing, both wholeness and individually and learning number of loading factor and construct reliability and the result of testing fit model and relevant findings
can be summed up that the model of instrument measurement which is developed can be accepted as the assessor of instrument for science process skill in Islamic Senior high School, especially in Biology subject.

V. CONCLUSIONS

Based on finding and discussion of the research results, it can be drawn some conclusions as follows.

1. Developing instrument for science process skill for Islamic Senior high School, especially in Biology subject. Pengembangan instrument keterampilan proses sains siswa di Madrasah Aliyah dalam mata pelajaran Biologi conducted through 5 stages, namely (a) product analysis which is developed which covers: theoretical analysis and discuss the previous related research result; (b) developing prior product; (c) product validity, covers the content validity through expert judgement and pannellist; (d) field try-out, consist of empirically tested on the first stage and second stage with CFA technique; and (e) product revision, including improvement post-try-out by paying attention to the expert consideration.

2. Dimension or factor which basis the science process skill of the Islamic Senior high School, especially in Biology subject. achieved as many 6 dimension, namely: observing, classifying, measuring, inferring, predicting, and communicating which are measured by 41 items which have excellent validity.

3. Empirical validity on the item of science process skill which is on excellent category. So that, it can be used in teaching and learning Biology subject.

4. The instrument of science process skill for Islamic Senior high School, especially in Biology subject has composite reliability as 0.986 or excellent, which comprises of doing observing 0.99, classifying 0.97, measuring 1.00, inferring 0.98, predicting 0.87, and communicating skill 0.87. Besides that, the result of conceptual model testing science process skill which is proposed is fit with the data.

A. Suggestions

Based on the research conclusion, it can be delivered some suggestions as follows:

1. The indicator of science process skill on the blueprint of instrument need to be developed more variety. This respect can be rearrange the relevant items.

2. Developing the instrument need to be expanded its population not only to scope of area but also the level of education.

3. Considering that science process skill has an important role in learing successfulness, especially on Biology subject, so it is suggested to the teachers in conducting the teaching and assessment with problem based learning dan project based learning approach.

4. Sciences and mathematics teacher should be given about science process training and constructing higher order thinking test (HOT).

REFERENCES