Arif Tjahjono
Pengaruh Temperatur Anealing Terhadap Kekuatan Benturan Dan Kekerasan Baja Perkakas Tipe A

Arif Tjahjono, Syahru Ramadhonial
Analisis Sifat Fisis Dan Kekerasan Komposit Matriks Logam Berpenguat Keramik (Al/SiC) Berbasis Metalurgi Serbuk

Sitti Ahmiatri Saptari
Karakterisasi Ukuran Partikel, Struktur Kristal Dan Sifat Magnet Bahan NiZn Ferit Dengan Variasi Lama Milling

Bambang Sugiharto
Pengerasan Permukaan Baja Karbon Rendah ST 37 Dengan Metode Boronisasi

Sutrisno
Analisis Statistik Periode Ulang Gempa Bumi Di Daerah Bengkulu dan Sekitarnya

Ika Mayasari
Karakterisasi Produk Magnet Permanen Berbasis 80% BaO.6Fe₂O₃ Dan 20% NdFeB

Edi Sanjaya, Tia Purnama
Metode Jaringan Saraf Tiruan Backpropagation Dalam Pengenalan Huruf Dan Angka Plat Kendaraan

A. Nurlaela, dkk
Penggunaan Cangkang Telur Sebagai Sumber Calcium Untuk Sintesis Mineral Tulang

PROGRAM STUDI FISIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH
JAKARTA
Daftar Isi
Volume VI, No. 2, April 2013
ISSN 1978-8061

Daftar Isi .. iii
Kata Pengantar ... iv

Arif Tjahjono – Pengaruh Temperatur Anealling Terhadap
Kekuatan Benturan Dan Kekerasan Baja Perkakas Tipe A 1-9

Arif Tjahjono, Syahru Ramadhonal – Analisis Sifat Fisis Dan
Kekerasan Komposit Matriks Logam Berpenguat Keramik (Al/SiC)
Berbasis Metalurgi Serbuk .. 10-20

Sitti Ahmiatri Saptari – Karakterisasi Ukuran Partikel, Struktur
Kristal Dan Sifat Magnet Bahan NiZn Ferit Dengan
Variasi Lama Milling .. 21-25

Bambang Sugiharto – Pengerasan Permukaan Baja Karbon Rendah
ST 37 Dengan Metode Boronisasi .. 26-30

Sutrisno – Analisis Statistik Periode Ulang Gempa Bumi
Di Dacrah Bengkulu dan Sekitarnya .. 31-35

Ika Mayasari – Karakterisasi Produk Magnet Permanen Berbasis
80% BaO.6Fe₂O₃ Dan 20% NdFeB .. 36-42

Edi Sanjaya, Tia Purnama – Metode Jaringan Saraf Tiruan
Backpropagation Dalam Pengenalan Huruf
Dan Angka Plat Kendaraan ... 43-54

A. Nurlaela, dkk – Penggunaan Cangkang Telur Sebagai Sumber
Calcium Untuk Sintesis Mineral Tulang ... 55-61
KATA PENGANTAR REDAKSI

Assalamualaikum Wr. Wb

Pembaca yang terhormat,

Pada volume ke enam ini terdapat 8 (delapan) tulisan dari berbagai macam peminatan yang ada pada program studi fisika. Tulisan-tulisan tersebut membahas masalah yang berkaitan dengan fisika instrumentasi, nuklir, material dan ilmu kebumian (geofisika).

Kami menyadari pada penerbitan kali ini masih banyak kekurangan, oleh karena itu kritik dan saran yang membangun sangat kami harapkan untuk perbaikan pada penerbitan yang akan datang.

Wassalammualaikum Wr. Wb

Redaksi
ANALISIS STATISTIK PERIODE ULANG GEMPA BUMI DI DAERAH BENGKULU DAN SEKITARNYA

Sutrisno
Dosen Program Studi Fisika, Fakultas Sain dan Teknologi, UIN Syarif Hidayatullah, Jakarta
Jl. Ir. H Juanda no. 95 Ciputat, Tangerang Selatan, Banten
Email: sut_uin@yahoo.com

ABSTRAK
Wilayah Bengkulu merupakan daerah seismik aktif karena letaknya dekat dengan daerah penunjaman antara lempeng tekttonik Hindia-Australia dan Eurasia. Dengan menentukan hubungan antara magnitude dan frekuensi gempa-gempa yang terjadi tahun 1975 – 2010 dapat di estimasi besarnya waktu periode ulang gempa-gempa dengan magnitude 5,0 ≤ M ≤ 6,0 Skala Richter di daerah Bengkulu. Dengan menggunakan persamaan \(\theta (M \geq M_0) = 1 / N (M \geq M_0) \) dapat diperoleh harga-harga periode ulang gempa-gempa dengan kedalaman dangkal dan menengah yang terjadi di zona 1, zona 2, dan zona 3 wilayah Bengkulu sebagai berikut:

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Gempa Dangkal</th>
<th>Gempa Menengah</th>
<th>Gempa Dangkal</th>
<th>Gempa Menengah</th>
<th>Gempa Dangkal</th>
<th>Gempa Menengah</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,0≤M<6,0</td>
<td>0.45 thn</td>
<td>5.62 thn</td>
<td>0.78 thn</td>
<td>9.05 thn</td>
<td>1.39 thn</td>
<td>3.86 thn</td>
</tr>
</tbody>
</table>

Dari hasil analisis data di atas dapat ditunjukkan bahwa periode ulang paling kecil terdapat pada zona 1 untuk gempa dangkal. Sedangkan periode ulang yang paling lama terdapat pada zona 2 untuk gempa-gempa dengan kedalaman menengah.

Kata kunci: gempa bumi, periode ulang, magnitude, frekuensi, least square.

ABSTRACT
Bengkulu region is the seismic active area because it is position near the subduction zones between Hindia-Australia and Eurasian plate tectonic. By determining the relation between magnitude and frequency of the earthquake occurrence in Bengkulu at the year 1975 - 2010, it can be estimated the return period of earthquakes with magnitude 5.0 ≤ M ≤ 6.0 Richter Scale . By using the equation \(\theta (M \geq M_0) = 1 / N (M \geq M_0) \), it can be obtained the return period of earthquake occurrence in Bengkulu region 1, region 2, and region 3 with shallow and intermediate depth:

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Region 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shallow Earthquake</td>
<td>Intermediate Earthquake</td>
<td>Shallow Earthquake</td>
</tr>
<tr>
<td>5.0≤M<6.0</td>
<td>0.45 years</td>
<td>5.62 years</td>
<td>0.78 years</td>
</tr>
</tbody>
</table>

From the result analysis mentioned above, it can be shown that the faster return period at the region 1 with the shallow depth earthquake. The longest return period at the region 2 with the intermediate depth earthquake.

Key word: earthquake, return period, magnitude, frequency, least square.
1. Pendahuluan

2. Metodologi
2.1. Data
Data yang digunakan dalam penelitian ini adalah data gempa bumi yang pernah terjadi di daerah Bengkulu dan sekitarnya dari tahun 1975 sampai dengan 2010 (35 tahun) sebanyak ± 500 data [4]. Magnitude gempa 5,0 ≤ M ≤ 6,0 Skala Richter dan kedalaman dangkal (0–60 km) sampai menengah (61-300 km). Secara geografis daerah penelitian dibagi menjadi tiga zona dengan posisi koordinat: zona 1 (2,23LS-3,34LS dan 96,48BT-102,7BT).

<table>
<thead>
<tr>
<th>Waktu Gempa</th>
<th>Lokasi</th>
<th>Mag</th>
<th>Kedalaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-07-00 12:11:33</td>
<td>4.3-103.2</td>
<td>5.1</td>
<td>61 Km</td>
</tr>
<tr>
<td>27-06-87 21:55:29</td>
<td>5.1-104.8</td>
<td>5.1</td>
<td>56 Km</td>
</tr>
<tr>
<td>26-06-06 20:12:54</td>
<td>4.7-104.6</td>
<td>5.0</td>
<td>10 Km</td>
</tr>
<tr>
<td>24-06-02 22:34:08</td>
<td>0.5-103.1</td>
<td>5.0</td>
<td>10 Km</td>
</tr>
<tr>
<td>26-06-92 17:12:54</td>
<td>4.2-103.6</td>
<td>5.0</td>
<td>10 Km</td>
</tr>
</tbody>
</table>

2.2. Metode
Dalam penelitian ini digunakan metode kwadrat terkecil (least square) dan regresi linier. Ada beberapa parameter yang ditentukan dalam penelitian ini berdasarkan data gempa di atas yaitu:

2.2.1. Konstanta a dan b
Konstanta ini berasal dari hubungan linier antara frekuensi dan magnitude gempa yang dikemukakan oleh B. Gutenberg dan C.F. Richter (1945) [5]:

\[\log N(M) = a - bM \]

dimana: \(N \) = frekuensi gempa
\(M \) = magnitude

Gambar 1 menunjukkan hubungan linier negatif antara frekuensi dan magnitude gempa bumi. Semakin besar frekuensi terjadinya gempa akan semakin kecil magnitudenya. Hubungan tersebut merupakan konsep dasar
statistik seismologi dalam bentuk persamaan linier.

\[Y_i : \text{logaritma dari frekuensi gempa untuk kelas magnitude tertentu} \]
\[r : \text{koefisien korelasi} \]
\[a \text{ dan } b : \text{konstanta} \]

2.2.2. Indeks Seismisitas
Indeks seismisitas merupakan parameter fisis yang menggambarkan jumlah gempa yang terjadi dalam waktu satu tahun dengan magnitude lebih besar dari \(M_0 \) di daerah penelitian. Indeks Seismisitas dihitung dengan rumus [7]:

\[N(M \geq M_0) = 10^{(a \cdot \log (b \cdot 10^\Delta t) - b \cdot M_0)} \]

\[N(M \geq M_0) : \text{indeks seismisitas untuk magnitude } M \geq M_0 \]
\[a \text{ dan } b : \text{konstanta hubungan antara frekuensi dan magnitudo} \]
\[M : \text{magnitude} \]
\[\Delta t : \text{interval waktu pengamatan} \]
\[M_0 : \text{magnitude terkecil} \]

2.2.3. Periode Ulang Gempa
Secara fisis gempa bumi yang pernah terjadi di suatu tempat akan terjadi lagi pada waktu yang akan datang di tempat yang sama. Waktu perulangan kejadian gempa itu disebut Periode Ulang Gempa dan dihitung dengan rumus [8]:

\[\theta (M \geq M_0) = 1 / N(M \geq M_0) \]

\[N(M \geq M_0) : \text{indeks seismisitas untuk magnitude } M \geq M_0 \]
\[\theta (M \geq M_0) : \text{periode ulang untuk magnitude } M \geq M_0 \]

3. Hasil dan Pembahasan
Daerah Bengkulu dibagi menjadi 3 zona (region) seperti gambar di bawah ini:

\[n : \text{banyaknya kelas magnitude} \]
\[X_i : \text{titik tengah dari kelas magnitude} \]
Berdasarkan arah dan pola sebaran gempa bumi (Gambar 2), Wilayah Bengkulu sebagai daerah penelitian dibagi menjadi 3 zona, yaitu zona 1, zona 2, dan zona 3. Tiap-tiap zona dianalisis berdasarkan data gempa dangkal dan gempa menengah [9]. Hasil perhitungan konstanta b untuk gempa dengan $5.0 \leq M \leq 6.0$ (tabel 2):

<table>
<thead>
<tr>
<th>Zona 1 (dangkal)</th>
<th>-0,727326355</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 1 (menengah)</td>
<td>-1,786320649</td>
</tr>
<tr>
<td>Zona 2 (dangkal)</td>
<td>-0,657293636</td>
</tr>
<tr>
<td>Zona 2 (menengah)</td>
<td>-1,46357</td>
</tr>
<tr>
<td>Zona 3 (dangkal)</td>
<td>-0,708657836</td>
</tr>
<tr>
<td>Zona 3 (menengah)</td>
<td>-0,812770237</td>
</tr>
</tbody>
</table>

Dari hasil yang diperoleh pada tabel 2 di atas, nilai konstanta b terbesar berada di zona 1 untuk gempa menengah dan yang terkecil berada di zona 2 untuk gempa dangkal. Hal ini menunjukkan bahwa struktur batuan pada zona 1 lebih rapuh dan mudah patah dari pada di zona 2 [10]. Hasil perhitungan indeks seismisitas untuk gempa dengan $5.0 \leq M \leq 6.0$ (tabel 3):

<table>
<thead>
<tr>
<th>Zona 1 (dangkal)</th>
<th>2,240473582</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona 1 (menengah)</td>
<td>0,178009012</td>
</tr>
<tr>
<td>Zona 2 (dangkal)</td>
<td>1,279611988</td>
</tr>
<tr>
<td>Zona 2 (menengah)</td>
<td>0,11044179</td>
</tr>
<tr>
<td>Zona 3 (dangkal)</td>
<td>0,717731285</td>
</tr>
<tr>
<td>Zona 3 (menengah)</td>
<td>0,259864811</td>
</tr>
</tbody>
</table>

Dari hasil yang diperoleh pada tabel 3 di atas, indeks seismisitas terbesar terjadi pada zona 1 untuk gempa dangkal sedangkan indeks seismisitas terkecil berada di zona 2 untuk gempa menengah. Ini berarti bahwa di zona 1 memiliki peluang yang kuat akan terjadi dua kali gempa dangkal dalam setahun dengan magnitude $5.0 \leq M \leq 6.0$ [10]. Hasil perhitungan periode ulang untuk gempa dengan $5.0 \leq M \leq 6.0$:

<table>
<thead>
<tr>
<th>Region 1 (dangkal)</th>
<th>0,446334207</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1 (menengah)</td>
<td>5,6176931</td>
</tr>
<tr>
<td>Region 2 (dangkal)</td>
<td>0,781486896</td>
</tr>
<tr>
<td>Region 2 (menengah)</td>
<td>9,054543537</td>
</tr>
<tr>
<td>Region 3 (dangkal)</td>
<td>1,393279101</td>
</tr>
<tr>
<td>Region 3 (menengah)</td>
<td>3,848154728</td>
</tr>
</tbody>
</table>

Dari hasil yang diperoleh pada tabel 4 menunjukkan bahwa periode ulang terbesar pada zona 2 untuk gempa menengah sehingga daerah ini lebih aman dari zona lainnya sedangkan periode ulang terkecil pada zona 1 untuk gempa dangkal yang berarti daerah ini lebih sering terjadinya gempa dangkal dibandingkan zona lainnya.
[10] Dari hasil yang di peroleh resiko gempa tertinggi terdapat di region 1 untuk gempa dangkal dan terrendah berada di region 2 untuk gempa menengah.

4. Kesimpulan dan Saran
4.1. Kesimpulan
a. Dari hasil yang diperoleh zona 1 memiliki konstanta b terbesar dibandingkan 2 zona lainnya. Hal ini berarti kondisi geologi di zona 1 lebih heterogen dan mudah retak sehingga sering terjadi gempa.
b. Dilihat dari tingkat resiko, daerah yang mempunyai resiko gempa tinggi berada di zona 1 dengan kedalaman dangkal. Sedangkan daerah yang memiliki tingkat resiko gempa rendah berada pada region 2 untuk gempa menengah.

4.2. Saran
Karena daerah Bengkulu merupakan daerah rawan gempa, maka dalam mendirikan bangunan fisik baik hunian maupun fasilitas umum hendaknya selalu mengikuti peraturan bangunan tahan gempa yang berlaku.

5. Daftar Pustaka
[1] Subardjo, Penunjukan lempeng Indo-Australia terhadap lempeng Eurasia, kaitannya dengan periode ulang gempa bumi dengan M 8,1

