Journal on Mathematics Education
(Accredited “B” by KEMRISTEKDIKTI No. 1/E/KPT/2015)
Website: http://ejournal.unsri.ac.id/index.php/jme

Editor in Chief
Zulkardi, (SCOPUS ID: 55808334900), Sriwijaya University, Palembang, Indonesia

Managing Editor
Warty Widjaja, (SCOPUS ID: 24177678200), Deakin University, Geelong, Australia

Advisory International Editorial Boards
Kaye Swaeny, (SCOPUS ID: 7403572015), University of Melbourne, Australia
Widodo, (SCOPUS ID: 7409509183), Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia
Masithah Shahrill, (SCOPUS ID: 5587798300), Universiti Brunei Darussalam, Brunei Darussalam
Tom Lowrie, (SCOPUS ID: 55955596500), University of Canberra, Australia
Zaleha Ismail, (SCOPUS ID: 36760992000), Universiti Teknologi Malaysia, Malaysia
Berindejeet Kaur, (SCOPUS ID: 36466505700), National Institute of Education, Nanyang Technological University, Singapore
Lee Peng Yee, (SCOPUS ID: 8967077700), National Institute of Education, Nanyang Technological University, Singapore
David C Webb, (SCOPUS ID: 5610603400), University of Colorado at Boulder, Boulder, United States
Darmawijoyo, (SCOPUS ID: 7409683027), Sriwijaya University, Palembang, Indonesia
Cyril Jullie, (SCOPUS ID: 9434368700), University of the Western Cape, Bellville, South Africa
Christa Kaune, (SCOPUS ID: 5538696300), Institute for Cognitive Mathematics, University of Osnabrueck, Germany
Dolly van Eerde, (SCOPUS ID: 33070570900), Freudenthal Institute (FI), Utrecht University, Netherlands
Maarten Dollk, (SCOPUS ID: 8541341100), Freudenthal Institute (FI), Utrecht University, Netherlands
Arviyadi Wijaya, (SCOPUS ID: 56427813700), Universitas Negeri Yogyakarta (UNY), Indonesia
Al Jupri, (SCOPUS ID: 56378251200), Universitas Pendidikan Indonesia (UPI), Bandung, Indonesia
Franz van Galen, (SCOPUS ID: 55975430300), Freudenthal Institute (FI), Utrecht University, Netherlands
Maman Fathurohman, (SCOPUS ID: 56919678000), Universitas Sultan Ageng Tirtayasa (Untirta), Serang, Indonesia

Editorial Assistant
Ruly Charitas Indra Pahmna, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Eliza Kurniadi, Sriwijaya University, Palembang, Indonesia
Bustang, Universitas Negeri Makassar (UNM), Indonesia

Editorial Address
Program Studi S3 Pendidikan Matematika FKIP Universitas Sriwijaya
Kampus FKIP Bukit Besar
Jl. Sriwijaya Negara, Bukit Besar
Palembang - 30139
E-mail: rully.jme@gmail.com

Published by Department of Doctoral Program on Mathematics Education, Sriwijaya University, in Collaboration with Indonesian Mathematical Society (IndoMS)
AUTHOR GUIDELINES

Journal on Mathematics Education (JME), an international journal, provides a forum for publishing the original research articles, review articles from contributors, and the novel technology news related to mathematics education that published two times a year: January and July. Scientific articles dealing with realistic mathematics education, design research, development research, etc., are particularly welcome. The journal encompasses research articles, original research report, reviews, short communications and scientific commentaries in mathematics education.

All papers submitted to the journal should be written in good English. Authors for whom English is not their native language are encouraged to have their paper checked before submission for grammar and clarity. English language and copyediting services can be provided by International Science Editing and Asia Science Editing. This work should not have been published or submitted for publication elsewhere. The official language of the manuscript to be published in JME is English.

General Author Guidelines

All manuscripts must be submitted to JME Editorial Office by Online Submission at E-Journal portal address: http://ejournal.unri.ac.id/index.php/jme, where author register as Author and/or offered as Reviewer by online. If authors have any problems on the online submission, please contact Editorial Office at the following email:ully.jme@gmail.com.

Reviewing of Manuscripts

Every submitted paper is independently reviewed by at least two peer-reviewers. Decision for publication, amendment, or rejection is based upon their reports/recommendation. If two or more reviewers consider a manuscript unsuitable for publication in this journal, a statement explaining the basis for the decision will be sent to the authors within three months of the submission date.

Guideline for Online Submission

Author should first register as Author and/or is offered as Reviewer through the following address: http://ejournal.unri.ac.id/index.php/jme/about/submissions#onlineSubmissions

Author should fulfill the form as detail as possible where the star marked form must be entered. After all form textbox was filled, Author clicks on “Register” button to proceed the registration. Therefore, Author is brought to online author submission interface where Author should click on “New Submission”, in the Start a New Submission section, click on “Click Here: to go step one of the five-step submission process”. The following are five steps in online submission process:

1. Step 1 - Starting the Submission: Select the appropriate section of journal, i.e. Original Research Articles, Review Article, or Short Communication. Thus, author must check-mark on the submission checklist.

2. Step 2 - Uploading the Submission: To upload a manuscript to this journal, click Browse on the Upload submission file item and choose the manuscript document file to be submitted, then click Upload button.

3. Step 3 - Entering Submission's Metadata: In this step, detail authors metadata should be entered including marked corresponding author. After that, manuscript title and abstract must be uploaded by copying the text and paste in the textbox including keywords.

4. Step 4 - Uploading Supplementary Files: Supplementary file should be uploaded including Covering/Submission Letter, and Signed Copyright Transfer Agreement Form. Therefore, click on Browse button, choose the files, and then click on Upload button.

5. Step 5 - Confirming the Submission: Author should final check the uploaded manuscript documents in this step. To submit the manuscript to JME, click Finish Submission button after the documents is true. The corresponding author or the principal contact will receive an acknowledgement by email and will be able to view the submission's progress through the editorial process by logging in to the journal web address site.

After this submission, Authors who submit the manuscript will get a confirmation email about the submission. Therefore, Authors are able to track their submission status at any time by logging in to the online submission interface. The submission tracking includes status of manuscript review and editorial process.

Author Fee (Page Charge)

Journal on Mathematics Education (JME) is an open access international journal. Since manuscript submission year 2015, there will be no administration fee for authors from outside of Indonesia. However, authors from Indonesia will be charged Rp1.000.000 (USD 100) per accepted article for the administration work (article processing and DOI maintenance) once their articles has been accepted.
THNOMATHEMATICS IN PERSPECTIVE OF SUNDANESE CULTURE
Je Setiawan Abdallah
1-16

SING BAYESIAN NETWORKS TO UNDERSTAND RELATIONSHIPS AMONG
MATH ANXIETY, GENDERS, PERSONALITY TYPES, AND STUDY HABITS AT A
UNIVERSITY IN JORDAN
Reem Smaiel
17-34

JUSTIFICATION FOR THE SUBJECT OF CONGRUENCE AND SIMILARITY IN
THE CONTEXT OF DAILY LIFE AND CONCEPTUAL KNOWLEDGE
M. Dündar, Nazan Güldüz
35-54

METAPHORICAL THINKING LEARNING AND JUNIOR HIGH SCHOOL
TEACHERS’ MATHEMATICAL QUESTIONING ABILITY
Eris Hendriana, Euis Eti Khoeti, Wahyu Hidayat
55-64

INVESTIGATION OF CONTINGENCY PATTERNS OF TEACHERS’
CAFFOLDING IN TEACHING AND LEARNING MATHEMATICS
Nusr, Ipung Yuwono, Edy Bambang Irawan, Abdur Rahman As’ari
65-76

IMPROVING MATHEMATICS ACHIEVEMENT OF INDONESIAN 5TH GRADE
STUDENTS THROUGH GUIDED DISCOVERY LEARNING
Umnawati, Latipa Hanum
77-84

IMPROVING MATHEMATICAL PROBLEM-SOLVING ABILITY AND SELF-
CONFIDENCE OF HIGH SCHOOL STUDENTS THROUGH CONTEXTUAL
LEARNING MODEL
Eddy Surya, Ferra Aadiyana Putri, Mukhtar
85-94

DESIGN STUDY: INTEGER SUBTRACTION OPERATION TEACHING
LEARNING USING MULTIMEDIA IN PRIMARY SCHOOL
Endi Muhammad Aris, Ratu Ilma Idrad Putri, Ely Susanti
95-102

THE IMPLEMENTATION OF OPEN-INQUIRY APPROACH TO IMPROVE
STUDENTS’ LEARNING ACTIVITIES, RESPONSES, AND MATHEMATICAL
CREATIVE THINKING SKILLS
Kadir, Luciana Gisni Satriawati
103-114
THE IMPLEMENTATION OF OPEN-INQUIRY APPROACH TO IMPROVE STUDENTS’ LEARNING ACTIVITIES, RESPONSES, AND MATHEMATICAL CREATIVE THINKING SKILLS

Kadir, Lucyna, Gusni Satriawati
Syarif Hidayatullah State Islamic University of Jakarta, Jl. Ir. Juanda No. 55, Ciputat 15412, Indonesia
Email: kadir@usjkt.ac.id

Abstract
This study aims to reveal the improvement of the students' learning activities, responses, and mathematical creative thinking skills (MCTS) through open-inquiry approach (OIA). Other relevant studies in mathematics learning tend to focus on guided inquiry, and especially in Indonesia, OIA is still less applied. This study is conducted at State Junior High School in Indonesia. The method used in this study is Classroom Action Research (CAR) consists of four stages: planning, acting, observing, and reflecting. Data is collected through observation, journal reviews, interview, and test. The result of the study shows that the implementation of OIA enhances the students' MCTS. It is shown by the improvement of the average of students' score from 73.05 in the first cycle to 78.95 in the second cycle. The increasing of MCTS includes some aspects: fluency, flexibility, and originality. The result also shows that in general, the students give positive response and engage well in learning activities with OIA. It can be concluded that the implementation of OIA enhances learning activities, gives positive response towards mathematics, and improves students' creative thinking skills.

Keyword: Open-Inquiry Approach, Learning Activity, Response, Creative Thinking Skill

Abstrak

Kata Kunci: Pendekatan Open-Inquiry, Aktivitas Belajar, Respons, Kemampuan Berpikir Kreatif

Creative thinking is one of the fundamental capabilities which is possessed by the learners in the era of information and technology which is developing rapidly at present time. Educational institution as a conducive space to position the learners as a subject educational system to foster creative behavior, positive attitude and excellent character. Mathematics at school is a means to educate the students to become creative human. This is in accordance with the purpose of studying mathematics is to train and foster students how to think systematically, logically, creative, effective, consistent, developing a never give up attitude and confidence in problem solving.
Through the design and process of active learning, mathematics with fun, doing observation, asking, reasoning can develop the knowledge and creative thinking of students.

But, the reality of students' creative thinking abilities in Indonesia is still relatively at low levels. This condition is indicated by Program for International Student Assessment (PISA) under the Organization of Economic Cooperation and Development (OECD) in 2012 reported that the mathematical skills of Indonesia learners grade VIII is ranked at 64 of 65 countries, the problem is given in PISA is divided into three domains and 6 level, where level 6 is the most complex problems. This condition is caused by the level of achievement in answering questions correctly at level 5 or level 6 is close to zero that is 0.3% and far from the average percentage of students of other countries, namely 12.6%. However, the Indonesian students reached high achievement (75.7%) in answering questions correctly at level 2 and 1 (OECD, PISA 2012). The Questions on the matter at levels 1 and 2, generally associated with interpreting the situation in a given problem, then solve procedurally using general formulas. This means, Indonesian students tend to have only lower-order thinking skills (LOT) of a procedural nature and have not been able to develop creativity and higher order thinking skills (HOT).

Erync (1991: 47) defines creativity in a framework of mathematical knowledge as an ability to solve problems or to develop thinking in structures, taking into account of the peculiar logic-deductive nature of the discipline, and of the fitness of the generated concepts to integrate into the core of what is important in mathematics. Since those definitions deal with originality and usefulness, the definition of mathematical. Compared to Erync in (Sumarno, 2014: 245) is more complete explanation related to creative thinking skills, includes aspects of cognitive, affective, and metacognitive. Especially aspect of cognitive skill, covers the ability to: identify problems and opportunities, draw up a different question, identify data which are relevant and irrelevant, to generate new ideas (fluency), the different ideas (flexibility), and the idea that new, change mindsets, and old habits, draw up a new relationship, and renew a plan or idea (Originality). Furthermore, Silver (1997) asserts that the indicator to evaluate the creative thinking skill using The Torrance Test of Creative Thinking (TTCT), contains three key components, namely fluency, flexibility, and novelty.

Regarding to the same concepts elucidated by some experts above, it can be drawn a conclusion that mathematical creative thinking skills (MCTS) is the skill to give ideas to solve a mathematical problem based on the indicators which include: (1) fluency, the students' skill to create a bunch of idea in solving problem, (2) flexibility, is the skill to give a different way to solve the mathematical problem, and (3) originality, is the students' skill in self-analyzing their problem by answering through unfamiliar way. Conventional learning is still found in the subjects of mathematics, it is seen from the observation of learning activities of students in secondary schools, showed that most students simply sit passively, they are not actively involved in learning. Learning mathematics tend to be only the transfer of knowledge from teacher to student (teaching center), less students are given the opportunity to make ideas or new ideas that are different from students.

The results of preliminary observations and interviews on one of the State Junior High School in Indonesian shows that creative thinking ability of students is still relatively low, around 50% of students in the class had difficulty solving mathematical problems of non-routine. Students also have difficulty preparing their own conjecture, solving mathematical problems, generally students using exactly the same methods that have been
taught by teacher.

One of the alternative approaches to learning that can motivate and oriented to increase the ability of creative thinking is the open inquiry approach (OIA). Emphasizes on the process of searching for and finding through the process of investigation of a problem. The role of the students in this study is to seek and find their own piece of knowledge, while the teachers act as facilitators and mentors for the students to foster the appropriateness, challenging questions, and trigger student-generated investigation in learning. Open or “full” inquiry can be defined as a student-centered approach that begins with a student’s question followed by the students designing and conducting an investigation or experiment and communicating result (National Research Council, 1996; Colbum, 2000).

According to Jarret (1997: 4) there are eight stages in learning process of open or full inquiry, they are: (1) learning in a rich environment, (2) thinking of a question, and shaping it into something they can investigate, (3) hypothesizing, (4) planning an investigation, (4) collecting data, (5) analyzing that data, (6) forming a conclusion, (7) communicating their findings. Furthermore, Sini (2015), states that the stages of open inquiry learning, including: (1) formulating problem, (2) developing and formulating hypothesis, (3) designing and doing testing hypothesis, (4) drawing conclusion. The definition of learning open inquiry in this research is learning that giving freedom to students to conduct an investigation into a mathematical problem through the following steps: (1) formulate the problem, (2) formulate a hypothesis, (3) test the hypothesis, (4) draw conclusion.

Based on the mapping of the above problems, this investigation implemented open inquiry learning approach to enhance the activity, response, and the students’ ability of mathematical creative thinking. Research questions are as follows:

1. How did the application of learning using OIA could increase the activity of mathematics learning?
2. How were the students’ response to learning using OIA?
3. How did the application of learning using OIA could improve the students’ ability of mathematical creative thinking?

The results of this research expected to gives some significances not only theoretically but also practically, go to:
1. The schools, the results of the application of OIA to learning mathematics can be used as a learning model to improve the ability to think creatively both in science subjects and other relevant subjects.
2. The teachers, achievements and the profile of mathematical creative thinking obtained in this study as baseline data to develop a model of evaluation and learning to improve mathematics higher-order thinking (HOT) on various relevant materials.
3. The learners, step-by-step approach of open inquiry that has been developed in this study as a model to study mathematics independently at home to enhance the creative reasoning, and spark ideas or new ideas in mathematical problems solving.
4. The further researchers, the results of this study can be used as a source of information and theoretical and applicative reference materials for further research involving a variety of interventions to increase creative thinking abilities at any levels of education.
METHOD

The subjects of this study were all students of grade IX-II of State Junior High School (SMP Negeri) 1 Depok in academic year 2014/2015, and IX-I teachers as collaborator and observer. The role of researcher in this study were as perpetrator of the research while mathematics teachers as collaborators and observers where as a collaborator is working with researcher in developing the design of learning, reflecting, and determining the actions at the next cycle. As an observer is to give an assessment of the application of OLA and observing students' mathematics learning activities.

Research Design

This research applies a Classroom Action Research (CAR). This method is a process of systematic inquiry and self-reflective which conducted by teachers to improve teaching process in the class (Basnowi & Suryani, 2008; Mills, 2011; Alrider et al., 2005). The main purpose of the study was to improve and enhance the practice of mathematics learning. This study begins with a preliminary observation (pre-study). Based on the mapping and discovery of the problem root of pre-compiled research activities in the cycles I, covering the four stages, namely: Planning, Acting, Observing and Reflecting. In more detail of the research design is drawn in Figure 1.

![Figure 1. Classroom Action Research Design](image)

Research Procedures

1. Planning

This stage contains the determination of the design of OLA and the types of learning activities which would be observed, developing the learning plan, set criterion, determine collaborators as
partners in the learning process in the class, and making the observation sheet, field notes, interview sheets, and test questions for the final cycle.

2. Acting

This stage is the implementation or application of the contents of the planning or draft have been made that using OIA.

3. Observing

In this stage, the researcher did observation on the OIA learning process along with collaborators (class teacher). This observation is intended to explore, and to manage all document which relevant to the indicators that occurred during the research process.

4. Reflecting

This stage is to evaluate the activity, analysis, reflection on the implementation of OIA in learning process that has been done. The results obtained from the observations which were collected and analyzed together researchers and observers, to learn whether the activities have been implemented already achieved goals (criteria) are expected or still needs improvement. This stage is implement to improve the activities of the previous cycle, which will be applied in subsequent cycles. According to Costello (2011), that reflection is to emphasize on learning process through asking question and investigation which leads to develop students’ understanding. So, reflection can change experience become a learning.

Research Instruments

The instruments used to collect data in this study consisted of two types of test instruments and non-test instruments. Test was one of the instruments used as the formative test that conducted at the end of each cycle. This test aims to analyze or to know to what extend the students’ MCTS on of all materials that has been given as the implications of the action. Observation of individual activity sheet was used to determine students' mathematics learning activities. Observation sheet is also used to analyze and reflect on each cycle to improve learning in the next cycle. Furthermore, the group activities were observed through checklist observation sheet, it used to determine the development of group activities of each group was studying mathematics. Interview sheet used to interview the teachers and students in gaining information directly related to conduct instruction and any problems were found in the classroom. Students’ daily journal made to obtain the response from students in learning process through OIA in each session.

Data Analysis Technique

Data analysis technique applied in analyzing the data of this investigation was descriptive analysis. To ensure the data were valid, data were cross-checked by using triangulation technique. The triangulation types used in this study, covers triangulation of sources and techniques. Before performing data analysis, researchers re-examine the completeness of data from various sources. Data analysis was commenced by presenting the overall data were obtained from various sources, perusing
the data, then recapitulation the data, and compared to the criteria of success on intervention.

RESULTS AND DISCUSSION

Learning Activities

The students' activity in learning process used OIA is presented in comparison of the percentage of students in learning activities by using OIA, in Figure 2.

![Figure 2. Learning Activities by Using OIA](image)

Based on the analysis in the table and the Figure 2 above, it indicates that the overall activity of students' mathematics learning cycle 1 and cycle 2 with OIA increased from 73.51% in cycle 1 to be 85.34% in cycle 2. Increased activity include: do investigations, responding to, expressing opinion, drawing conclusion, and apply the conclusions on exercises. The following are some examples of intervention result in OIA:

1. Formulate a hypothesis (Figure 3)

A bag manufacturer plans to make hand bag with tubular type with a radius of 7 cm pedestal and height of 30 cm. What is the area of fabric required to produce one dozen?

![Figure 3. Formulate a hypothesis](image)

2. Hypothesis Testing (Figure 4)

In doing hypothesis testing, teacher gives replica cone with different measurement. The example of hypothesis testing is presented in Figure 4.
3. Draw conclusions

Please observe some times and you have to pour cone or ball contains butter in order to fill the tube until it is full. If you have done experiment, try to draw conclusion about cone volume and ball volume. The conclusion of the formula about the two volumes above are described in Picture 5.

Figure 5. Draw conclusions

Students' Response

The percentage of positive responses, neutral, and negative students to open-inquiry based learning approach open daily journal in cycle 1 and cycle 2 can be seen in Figure 6.
Based on the analysis of students' daily journal, it appears that the positive response of students from cycle 1 to cycle 2 undergone increasing by 19.32%, and a neutral response, and in particular the negative response of students from cycle 1 to cycle 2 decreased by 11.93%. It shows that most of the students liked the OIA. The response is positive, neutral and negative recorded in the daily journal linked by easy or hard materials studied every meeting with an OIA. Generally, if the material in the learning process easily perceived and understood then it will be a positive response, and vice-versa.

Mathematical Creative Thinking Skills (MCTS)

The data description of MCTS is presented completely in the Table 1 below.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Cycle 1</th>
<th>Cycle 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Mean</td>
<td>73.05</td>
<td>78.95</td>
</tr>
<tr>
<td>Median</td>
<td>73.00</td>
<td>80.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>12.26</td>
<td>12.65</td>
</tr>
<tr>
<td>Minimum</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>Maximum</td>
<td>93</td>
<td>100</td>
</tr>
</tbody>
</table>

The results of descriptive analysis as presented in Table 1 above, shows that the average score of students' ability in mathematical creative thinking, especially in cycle 1 is at 73.05 increased to 78.95 in cycle 2, where the average cycle has exceeded two successfulness indicator is 75. Furthermore, creative thinking abilities of students according to performance indicators mathematical fluency, flexibility, and provide answers to the unusual or originality in cycle 1 and 2 are presented in Figure 7.
Figure 7. Percentage of the Students Ability of MTCS of Cycle 1 and Cycle 2

Based on the chart, figure 4, students' MCTS increased from cycle 1 to cycle 2. These results happened on all indicators of creative thinking. This shows that the OIA intervention in cycle 2 has reached pre-determined success criteria, namely 75.

Based on the result analysis from the observation of students' learning activity, observation of students' response, and post-action in cycle 1 shows that the activity of students' learning mathematics have not reached the indicator. This respect is marked by the activity in stages of OIA learning has not maximal yet. Students still have difficulty in developing hypothesis and drawing conclusion. The activity of question of responding is at low level. The result of observation on students' response is more neutral and negative. The score of students' MTCS mostly has not reached the successfulness criteria which made by the researcher was 75. The students' score is still at low category.

In the cycle 2 was done some improvements in doing the stages of OIA and student work sheet (LKS) would be interested in both language aspect, performance, and learning atmosphere which are more fun, so that the passive students feel motivated in posing question or idea, answering, responding, and describing related to instructional materials.

The finding of the recent research reveals that students' activity in learning mathematics with OIA undergone the development from the first to the second cycle. The increasing of the activity which covers: doing investigation, responding, expressing idea, drawing conclusion, and applying the conclusion in solving problem. The students' process of learning mathematics with OIA runs well, through improving based on the result of the first cycle, so that, the students more motivated in following the next cycle (cycle 2). In the first cycle, there are still many students who have not got used to learning with using OIA, this condition is signed by some students who unwilling to work-out the exercises in the Task. Next, researcher gave some counseling to the students about the finding and building self-knowledge through OIA Task, so, in the second cycle, the students are more enthusiasm more active to get involved in learning activity. This finding is like what Sadeh and Zion (2012) reports that learning using open inquiry gives the opportunity to the students to be involved in
investigating a problem compared to guide inquiry learning strategy.

Furthermore, the research finding expresses that the students' positive response on learning with OIA undergone increasing from the first to the second cycle. On the contrary, neutral response and negative on OIA undergone decreasing from the first to the second cycle. This finding shows that the students found of and support learning process uses OIA, because in this instruction, the students guided to think and express the mathematical ideas through the problems which are presented in the students activity sheet (Task) with using their own experience and knowledge have had before. This finding similar to Zion and Mendelovici (2012) that the effectiveness of open inquiry learning in developing cognitive and procedural skills for inquiry and autonomous learning, as well as more positive attitudes towards science and science learning. This finding also similar to Gulo (2008), stated that inquiry not only developing intellectual competence but also all potency, included emotional development and inquiry skill is a process which started by formulating the problem, formulating hypothesis, collecting data, analyzing data, and drawing conclusion.

The research finding reveals, in general, the MCTS undergone development from the first to the second cycle. The MCTS increasing mentioned above focuses on some indicators, they are fluency, flexibility, and originality. Referring to these condition, it can be drawn that the increasing of MCTS on indicator of 'fluency' is supported by data description which is not so difficult or complicated, such as the students were described with the appropriate elements which meet the size of volume geometry. The students have expressed their idea in solving the problems, as shown by the students' answers which more than expected by questions posed.

The MCTS competence on indicator ‘flexibility’ seen from the number of students which could answer the question differently, even though, some of the students' answers have not completed with the appropriate concepts. Furthermore, the better result which is seen by the indicator ‘originality’ in the first cycle are more students answered formally and used a certain formula. Meanwhile, in the second cycle, the students could answer the tests with unfamiliar ways. Next, the students also could answer with various way and unique and accompanied by solution process systematically, and mostly the students are more scrutiny in answering the tests while paying attention to the incorrect answers in the previous cycle (first cycle).

The finding above, reveals that OIA shows that students' motivation for autonomous learning, finding and developing their own knowledge. The process of acquiring knowledge for the students were conducted not only through the materials which given by the teacher but also the students were given an autonomy on their own creation, and logical thinking through the space or opportunity to find novel ideas in learning mathematics. These findings in line to Zion and Mendelovici (2012) that critical and logical thinking play an important role in an inquiry process. On the lower levels of inquiry, logical thinking focus on the linear and logical transition between the inquiry question, hypotheses, the inquiry plan and conclusions. On higher levels of inquiry, logical thinking which connects between the inquiries questions comprising a certain inquiry project. in matching the inquiry
questions with the inquiry plan, and throughout the entire process of setting up an experiment system.

The results of this investigation are in line with the findings which reported by Nishitani (2011), their findings reported that open inquiry learning approach is more effective than that shown in conventional learning process. This is also in line with what has been found by Fatah, et al. (2016) that learning through open-ended approach can better increase the students' mathematical creative thinking ability despite the different school category. Furthermore, viewed from the school category, the self-esteem of students at high and middle school categories who learn through open-ended approaches better than that of those who learn conventionally.

CONCLUSION

Based on the finding and discussion, it can be drawn conclusion that: Students' activity in learning mathematics with OIA undergone a good development from the first to the second cycle. The increasing of activities meant are doing investigation, answering, responding, expressing ideas, and drawing conclusion based on the solution obtained from problem solving. The positive response to the learning mathematics using OIA is at good categorized and over the success indicator which has been designated before. The students like, fun, and directly involved in learning mathematics using OIA.

The ability of MCTS through learning mathematics using OIA has reached a good categorized level and undergone a significantly increase from the first to the second cycle. The obtaining of MCTS competence is in the last period of the second cycle also has fulfilled the successfullness criteria which have been made in the previous action. The increasing of the competence of MCTS, covers fluency, flexibility, and originality. Finding which is related to the indicator 'fluency', students have could give more creative answer from which they were expected by the tests. Meanwhile, regarding to the indicator 'flexibility', the students have could give various answer types. Next, in the last indicator, the students have not only could give various answer types but also unique one.

REFERENCES

